Cantitate/Preț
Produs

3.1416 And All That

Autor Davis, CHINN
en Limba Engleză Paperback – 20 iul 1987
LYTTON STRACHEY tells the following story. In intervals of relaxation from his art, the painter Degas used to try his hand at writing sonnets. One day, while so engaged, he found that his in­ spiration had run dry. In desperation he ran to his friend Mallarme, who was a poet. "My poem won't come out," he said, "and yet I'm full of excellent ideas. " "My dear Degas," Mallarme retorted, "poetry is not written with ideas, it is written with words. " If we seek an application of Mallarme's words to mathematics we find that we shall want to turn his paradox around. We are led to say that mathematics does not consist of formulas, it consists of ideas. What is platitudinous about this statement is that mathe­ matics, of course, consists of ideas. Who but the most unregenerate formalist, asserting that mathematics is a meaningless game played with symbols, would deny it? What is paradoxical about the state­ ment is that symbols and formulas dominate the mathematical page, and so one is naturally led to equate mathematics with its formulas.
Citește tot Restrânge

Preț: 44300 lei

Preț vechi: 55375 lei
-20% Nou

Puncte Express: 665

Preț estimativ în valută:
8478 8944$ 7066£

Carte tipărită la comandă

Livrare economică 30 decembrie 24 - 04 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817633042
ISBN-10: 0817633049
Pagini: 188
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.24 kg
Ediția:2nd ed. 1985
Editura: Birkhäuser Boston
Colecția Birkhäuser
Locul publicării:Boston, MA, United States

Public țintă

Research

Descriere

LYTTON STRACHEY tells the following story. In intervals of relaxation from his art, the painter Degas used to try his hand at writing sonnets. One day, while so engaged, he found that his in­ spiration had run dry. In desperation he ran to his friend Mallarme, who was a poet. "My poem won't come out," he said, "and yet I'm full of excellent ideas. " "My dear Degas," Mallarme retorted, "poetry is not written with ideas, it is written with words. " If we seek an application of Mallarme's words to mathematics we find that we shall want to turn his paradox around. We are led to say that mathematics does not consist of formulas, it consists of ideas. What is platitudinous about this statement is that mathe­ matics, of course, consists of ideas. Who but the most unregenerate formalist, asserting that mathematics is a meaningless game played with symbols, would deny it? What is paradoxical about the state­ ment is that symbols and formulas dominate the mathematical page, and so one is naturally led to equate mathematics with its formulas.

Cuprins

1. The Problem That Saved a Man’s Life.- 2. The Code of the Primes.- 3. Pompeiu’s Magic Seven.- 4. What Is an Abstraction?.- 5. Postulates—The Bylaws of Mathematics.- 6. The Logical Lie Detector.- 7. Number.- 8. The Philadelphia Story.- 9. Poinsot’s Points and Lines.- 10. Chaos and Polygons.- 11. Numbers, Point and Counterpoint.- 12. The Mathematical Beauty Contest.- 13. The House That Geometry Built.- 14. Explorers of the Nth Dimension.- 15. The Band-Aid Principle.- 16. The Spider and the Fly.- 17. A Walk in the Neighborhood.- 18. Division in the Cellar.- 19. The Art of Squeezing.- 20. The Business of Inequalities.- 21. The Abacus and the Slipstick.- 22. Of Maps and Mathematics.- 23. “Mr. Milton, Mr. Bradley—Meet Andrey Andreyevich Markov”.- 24. 3.1416 and All That.- Ancient and Honorable Society of Pi Watchers: 1984 Report.