Cantitate/Preț
Produs

A Bose-Einstein Condensate Coupled to a Micromechanical Oscillator: Wenn Patienten Sich Krank Machen

Autor David Hunger
en Limba Engleză Paperback – 7 noi 2015
Ultracold neutral atoms can be trapped and coherently manipulated close to a surface using chip-based magnetic microtraps. This opens the possibility of studying interactions between atoms and on-chip solid-state systems such as micro- and nanostructured mechanical oscillators. This thesis reports experiments, where a controlled coupling between a Bose-Einstein condensate and a micromechanical oscillator is realized for the first time. The interaction relies on surface forces experienced by the atoms trapped at about 1 micrometer distance from the mechanical structure. The surface forces are used to resonantly couple the mechanical motion of the oscillator to collective motion of the atoms. Coupling via surface forces does not require magnets, electrodes, or mirrors on the oscillator and could thus be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes. In the long-term, the toolbox for quantum manipulation of ultracold atoms could be employed to read out, cool, and coherently manipulate the quantum state of a mechanical oscillator. The thesis discusses three different scenarios that could enable atom-oscillator coupling at the quantum level.
Citește tot Restrânge

Preț: 48442 lei

Preț vechi: 52654 lei
-8% Nou

Puncte Express: 727

Preț estimativ în valută:
9271 9653$ 7835£

Carte tipărită la comandă

Livrare economică 11-25 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783838118369
ISBN-10: 3838118367
Pagini: 188
Dimensiuni: 152 x 229 x 11 mm
Greutate: 0.28 kg
Editura: Sudwestdeutscher Verlag Fur Hochschulschrifte

Notă biografică

David Hunger studied physics at the Ludwig-Maximilians Universityin Munich and at the University of Sevilla. For his Phd thesis hejoined the team of Philipp Treutlein in the group of TheodorHänsch to study interactions between ultracold atoms andmechanical oscillators.