Cantitate/Preț
Produs

A Compact Course on Linear PDEs: UNITEXT, cartea 154

Autor Alberto Valli
en Limba Engleză Paperback – 30 aug 2023
This textbook is devoted to second order linear partial differential equations. The focus is on variational formulations in Hilbert spaces. It contains elliptic equations, including the biharmonic problem, some useful notes on functional analysis, a brief presentation of Sobolev spaces and their properties, some basic results on Fredholm alternative and spectral theory, saddle point problems, parabolic and linear Navier-Stokes equations, and hyperbolic and Maxwell equations. Almost 80 exercises are added, and the complete solution of all of them is included. The work is mainly addressed to students in Mathematics, but also students in Engineering with a good mathematical background should be able to follow the theory presented here. This second edition has been enriched by some new sections and new exercises; in particular, three important equations are now included: the biharmonic equation, the linear Navier-Stokes equations and the Maxwell equations. 

Citește tot Restrânge

Din seria UNITEXT

Preț: 43143 lei

Nou

Puncte Express: 647

Preț estimativ în valută:
8257 8577$ 6858£

Carte tipărită la comandă

Livrare economică 29 ianuarie-04 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031359750
ISBN-10: 3031359755
Pagini: 262
Ilustrații: XV, 262 p. 13 illus., 4 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.5 kg
Ediția:2nd ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seriile UNITEXT, La Matematica per il 3+2

Locul publicării:Cham, Switzerland

Cuprins

1. Introduction.- 2. Second order linear elliptic equations.- 3. A bit of functional analysis.- 4. Weak derivatives and Sobolev spaces.- 5. Weak formulation of elliptic PDEs.- 6. Technical results.- 7. Additional results.- 8. Saddle points problems.- 9. Parabolic PDEs.- 10. Hyperbolic PDEs.- Appendix A: Partition of unity.- Appendix B: Lipschitz continuous and smooth domains.- Appendix C: Integration by parts for smooth functions and vector fields.- Appendix D: Reynolds transport theorem.- Appendix E: Gronwall lemma.- Appendix F: Necessary and sufficient conditions for the well-posedness of the variational problem.

Notă biografică

Alberto Valli is a Professor of Mathematical Analysis at University of Trento. His research activity has focused on the mathematical analysis of linear and nonlinear partial differential equations, in particular in fluid dynamics and electromagnetism, and on their numerical approximation by means of the finite element method. He published more than 80 papers in prestigious international journals and 4 books on partial differential equations and their numerical approximation.

Textul de pe ultima copertă

This textbook is devoted to second order linear partial differential equations. The focus is on variational formulations in Hilbert spaces. It contains elliptic equations, including the biharmonic problem, some useful notes on functional analysis, a brief presentation of Sobolev spaces and their properties, some basic results on Fredholm alternative and spectral theory, saddle point problems, parabolic and linear Navier-Stokes equations, and hyperbolic and Maxwell equations. Almost 80 exercises are added, and the complete solution of all of them is included. The work is mainly addressed to students in Mathematics, but also students in Engineering with a good mathematical background should be able to follow the theory presented here. This second edition has been enriched by some new sections and new exercises; in particular, three important equations are now included: the biharmonic equation, the linear Navier-Stokes equations and the Maxwell equations. 

Caracteristici

The book corresponds to a 6-credits course, and is suitable for being used as a reference textbook The variational (Hilbert space) approach is consistently used in all the book The book contains almost 80 exercises, and all of them are completely solved