Cantitate/Preț
Produs

A Nonlinear Transfer Technique for Renorming: Lecture Notes in Mathematics, cartea 1951

Autor Aníbal Moltó, José Orihuela, Stanimir Troyanski, Manuel Valdivia
en Limba Engleză Paperback – 21 oct 2008
Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem.
Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c0 (T) satisfies the authors' conditions, transferring the norm to X. Nevertheless the authors' maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Fréchet differentiable.
This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 34057 lei

Nou

Puncte Express: 511

Preț estimativ în valută:
6517 6856$ 5410£

Carte tipărită la comandă

Livrare economică 15-29 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540850304
ISBN-10: 3540850309
Pagini: 164
Ilustrații: XI, 148 p.
Greutate: 0.25 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

?-Continuous and Co-?-continuous Maps.- Generalized Metric Spaces and Locally Uniformly Rotund Renormings.- ?-Slicely Continuous Maps.- Some Applications.- Some Open Problems.

Recenzii

From the reviews:
“The purpose of this monograph is to present a new general framework for the study of locally uniformly rotund (LUR) renormings. … In this monograph the authors give a complete description of an important and new general framework. This is certainly a very valuable up-to-date reference for specialists in renorming theory. It is also accessible to young researchers willing to discover this domain … .” (Gilles Lancien, Mathematical Reviews, Issue 2010 a)
“The authors of the book under review, contributed a lot to the progress achieved in renorming theory over the last fifteen years. … This nice and deep book addresses problems which are of interest for every functional analyst, and, moreover, anyone who intends to contribute to renorming theory must read it. I should finally mention that a very interesting list of commented problems concludes the book. This list constitutes an attractive research program, which should stimulate research for the years to come.” (Gilles Godefroy, Zentralblatt MATH, Vol. 1182, 2010)

Textul de pe ultima copertă

Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem.
Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c0 (T) satisfies the authors' conditions, transferring the norm to X. Nevertheless the authors' maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Fréchet differentiable.
This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis.

Caracteristici

Includes supplementary material: sn.pub/extras