A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations: Lecture Notes in Computational Science and Engineering, cartea 29
Autor Marc Alexander Schweitzeren Limba Engleză Paperback – 13 feb 2003
Din seria Lecture Notes in Computational Science and Engineering
- Preț: 375.63 lei
- 18% Preț: 1247.70 lei
- 18% Preț: 787.15 lei
- Preț: 384.31 lei
- 20% Preț: 990.95 lei
- 15% Preț: 648.56 lei
- 15% Preț: 653.00 lei
- Preț: 405.28 lei
- 18% Preț: 976.06 lei
- 18% Preț: 968.82 lei
- Preț: 397.97 lei
- 18% Preț: 962.49 lei
- 15% Preț: 647.08 lei
- 15% Preț: 648.56 lei
- 15% Preț: 649.54 lei
- 18% Preț: 1389.30 lei
- Preț: 428.30 lei
- 18% Preț: 1240.62 lei
- 20% Preț: 666.27 lei
- 15% Preț: 654.43 lei
- 15% Preț: 644.30 lei
- 18% Preț: 957.62 lei
- 18% Preț: 1224.18 lei
- 18% Preț: 904.11 lei
- 18% Preț: 1242.83 lei
- 20% Preț: 992.11 lei
- 15% Preț: 642.83 lei
- 18% Preț: 954.45 lei
- 18% Preț: 783.20 lei
- 18% Preț: 949.42 lei
- 15% Preț: 642.83 lei
- 18% Preț: 964.86 lei
- 18% Preț: 1260.83 lei
- 15% Preț: 650.37 lei
Preț: 360.64 lei
Nou
Puncte Express: 541
Preț estimativ în valută:
69.02€ • 71.78$ • 57.76£
69.02€ • 71.78$ • 57.76£
Carte tipărită la comandă
Livrare economică 10-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540003519
ISBN-10: 3540003517
Pagini: 208
Ilustrații: VI, 200 p. 15 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540003517
Pagini: 208
Ilustrații: VI, 200 p. 15 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Introduction.- 2 Partition of Unity Method.- 2.1 Construction of a Partition of Unity Space.- 2.2 Properties.- 2.3 Basic Convergence Theory.- 3 Treatment of Elliptic Equations.- 3.1 Galerkin Discretization.- 3.2 Boundary Conditions.- 3.3 Numerical Results.- 4 Multilevel Solution of the Resulting Linear System.- 4.1 Multilevel Iterative Solvers.- 4.2 Multilevel Partition of Unity Method.- 4.3 Numerical Results.- 5 Tree Partition of Unity Method.- 5.1 Single Level Cover Construction.- 5.2 Construction of a Sequence of PUM Spaces.- 5.3 Numerical Results.- 6 Parallelization and Implementational Details.- 6.1 Parallel Data Structures.- 6.2 Parallel Tree Partition of Unity Method.- 6.3 Numerical Results.- 7 Concluding Remarks.- Treatment of other Types of Equations.- A.1 Parabolic Equations.- A.2 Hyperbolic Equations.- Transformation of Keys.- Color Plates.- References.
Textul de pe ultima copertă
The numerical treatment of partial differential equations with meshfree discretization techniques has been a very active research area in recent years. Up to now, however, meshfree methods have been in an early experimental stage and were not competitive due to the lack of efficient iterative solvers and numerical quadrature. This volume now presents an efficient parallel implementation of a meshfree method, namely the partition of unity method (PUM). A general numerical integration scheme is presented for the efficient assembly of the stiffness matrix as well as an optimal multilevel solver for the arising linear system. Furthermore, detailed information on the parallel implementation of the method on distributed memory computers is provided and numerical results are presented in two and three space dimensions with linear, higher order and augmented approximation spaces with up to 42 million degrees of freedom.
Caracteristici
Includes supplementary material: sn.pub/extras