Cantitate/Preț
Produs

A Second Course in Linear Algebra: Cambridge Mathematical Textbooks

Autor Stephan Ramon Garcia, Roger A. Horn
en Limba Engleză Hardback – 10 mai 2017
Linear algebra is a fundamental tool in many fields, including mathematics and statistics, computer science, economics, and the physical and biological sciences. This undergraduate textbook offers a complete second course in linear algebra, tailored to help students transition from basic theory to advanced topics and applications. Concise chapters promote a focused progression through essential ideas, and contain many examples and illustrative graphics. In addition, each chapter contains a bullet list summarising important concepts, and the book includes over 600 exercises to aid the reader's understanding. Topics are derived and discussed in detail, including the singular value decomposition, the Jordan canonical form, the spectral theorem, the QR factorization, normal matrices, Hermitian matrices (of interest to physics students), and positive definite matrices (of interest to statistics students).
Citește tot Restrânge

Din seria Cambridge Mathematical Textbooks

Preț: 36216 lei

Preț vechi: 43092 lei
-16% Nou

Puncte Express: 543

Preț estimativ în valută:
6932 7454$ 5779£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107103818
ISBN-10: 1107103819
Pagini: 442
Ilustrații: 15 b/w illus.
Dimensiuni: 182 x 260 x 24 mm
Greutate: 1.07 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Mathematical Textbooks

Locul publicării:New York, United States

Cuprins

Preliminaries; 1. Vector spaces; 2. Bases and similarity; 3. Block matrices; 4. Inner product spaces; 5. Orthonormal vectors; 6. Unitary matrices; 7. Orthogonal complements and orthogonal projections; 8. Eigenvalues, eigenvectors, and geometric multiplicity; 9. The characteristic polynomial and algebraic multiplicity; 10. Unitary triangularization and block diagonalization; 11. Jordan canonical form; 12. Normal matrices and the spectral theorem; 13. Positive semidefinite matrices; 14. The singular value and polar decompositions; 15. Singular values and the spectral norm; 16. Interlacing and inertia; Appendix A. Complex numbers.

Recenzii

'A Second Course in Linear Algebra by Garcia and Horn is a brilliant piece of work in linear algebra and matrix theory; it is a fascinating text for advanced undergraduate students and graduate students in science, technology, engineering and mathematics (STEM). Covering not only standard material but also many interesting topics, it presents the most fundamental and beautiful ideas in the field with cutting edge applications (such as the singular value decomposition with the Mona Lisa image). The book will become a standard text that is interesting and enjoyable for students as well as researchers.' Fuzhen Zhang, Nova Southeastern University, Florida
'A Second Course in Linear Algebra by Garcia and Horn is an excellent addition to the texts available to instructors of advanced linear algebra courses. The authors have made all the right choices to create a very modern and useful text, for example, the emphasis on block matrices, matrix factorizations, and unitary matrices. The wide-ranging and varied collection of topics provides options to instructors, in addition to covering all the necessities. The book is readable and students will find the lists of important concepts at the end of each chapter useful.' Leslie Hogben, Iowa State University
'Garcia and Horn provide a tasteful mix of linear algebra and matrix theory that covers a wide range of 'must know' material. The book occupies the sparsely populated area between introductory linear algebra texts and research level books such as Horn and Johnson's Matrix Analysis. With its stylish presentation, rich set of exercises, and thorough index, there is no better book from which to learn this body of material.' Nicholas J. Higham, University of Manchester
'This exciting, modern text tells a story that speaks to students of core and applied mathematics as well as many domain sciences. The authors excel at welcoming readers to the subject, with captivating, crystal-clear exposition on every page. The overall composition is uncommonly thoughtful, featuring attractive visuals, energetic and to the point prose, and foundations that pay attention to applications from a traditional, continuous origin as well as the discrete origin of contemporary data analysis. This is a wonderful textbook, and a serious work of reference for experienced researchers.' Ilse Ipsen, North Carolina State University
'… if you are shopping around for a text for a second course in linear algebra, and your idea of a syllabus aligns with those of the authors (matrix oriented, avoidance of reliance on abstract algebra, not much in the way of applications) then this text should definitely be on your definite short list. Even if you're not teaching such a course, this book is worth a look as a general reference for matrix theory. It's a very valuable addition to the literature, and is highly recommended.' Mark Hunacek, MAA Reviews
'This is an impressive book for a second course in linear algebra, and there is much to learn from the excellent exposition. It is also a good reference text on matrix theory; incidentally, the second author is also co-author of the well-received monographs on matrix analysis.' Peter Shiu, The Mathematical Gazette
'The exposition is lively, consistently and uniformly clear, skillfully motivated, well researched, and beautifully illustrated. Nontrivial applications and examples are plentiful, concise, appropriately detailed, and timely (involving, e.g., image resolution and other 'best approximations' of large data sets, linkages between algebra and geometry, and so forth), all of which make the book both a well-honed learning tool and a useful reference.' Russell Merris, The American Mathematical Monthly
'… I highly recommend this book. It is an excellent textbook for a second course in linear algebra. It is also useful for self-study. And it is particularly valuable for anyone beginning research in any area that heavily uses linear algebra, not only because it covers all of the important results and techniques, but also because it teaches you to think like a matrix theorist.' IMAGE: Bulletin of the International Linear Algebra Society

Descriere

A second course in linear algebra for undergraduates in mathematics, computer science, physics, statistics, and the biological sciences.