Cantitate/Preț
Produs

A Spectral Theory for Simply Periodic Solutions of the Sinh-Gordon Equation: Lecture Notes in Mathematics, cartea 2229

Autor Sebastian Klein
en Limba Engleză Paperback – 6 dec 2018
This book develops a spectral theory for the integrable system of 2-dimensional, simply periodic, complex-valued solutions u of the sinh-Gordon equation.  Such solutions (if real-valued) correspond to certain constant mean curvature surfaces in Euclidean 3-space.  Spectral data for such solutions are defined (following ideas of Hitchin and Bobenko) and the space of spectral data is described by an asymptotic characterization. Using methods of asymptotic estimates, the inverse problem for the spectral data is solved along a line, i.e. the solution u is reconstructed on a line from the spectral data.  Finally, a Jacobi variety and Abel map for the spectral curve are constructed and used to describe the change of the spectral data under translation of the solution u.  The book's primary audience will be research mathematicians interested in the theory of infinite-dimensional integrable systems, or in the geometry of constant mean curvature surfaces. 
 
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 31793 lei

Nou

Puncte Express: 477

Preț estimativ în valută:
6084 6400$ 5050£

Carte tipărită la comandă

Livrare economică 15-29 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030012755
ISBN-10: 3030012751
Pagini: 290
Ilustrații: VIII, 334 p. 7 illus.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.48 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

- Part I Spectral Data. - Introduction. - Minimal Immersions into the 3-Sphere and the Sinh-Gordon Equation. - Spectral Data for Simply Periodic Solutions of the Sinh-Gordon Equation. - Part II The Asymptotic Behavior of the Spectral Data. - The Vacuum Solution. - The Basic Asymptotic of the Monodromy. - Basic Behavior of the Spectral Data. - The Fourier Asymptotic of the Monodromy. - The Consequences of the Fourier Asymptotic for the Spectral Data. - Part III The Inverse Problem for the Monodromy. - Asymptotic Spaces of Holomorphic Functions. - Interpolating Holomorphic Functions. - Final Description of the Asymptotic of the Monodromy. - Non-special Divisors and the Inverse Problem for the Monodromy. - Part IV The Inverse Problem for Periodic Potentials (Cauchy Data). - Divisors of Finite Type. - Darboux Coordinates for the Space of Potentials. - The Inverse Problem for Cauchy Data Along the Real Line. - Part V The Jacobi Variety of the Spectral Curve. - Estimate of Certain Integrals. - Asymptotic Behavior of 1-Forms on the Spectral Curve. - Construction of the Jacobi Variety for the Spectral Curve. - The Jacobi Variety and Translations of the Potential. - Asymptotics of Spectral Data for Potentials on a Horizontal Strip. - Perspectives.

Recenzii

“The book is useful for specialists studying periodic solutions to integrable nonlinear partial differential equations.” (Dmitry E. Pelinovsky, Mathematical Reviews, October, 2019)

Textul de pe ultima copertă

This book develops a spectral theory for the integrable system of 2-dimensional, simply periodic, complex-valued solutions u of the sinh-Gordon equation.  Such solutions (if real-valued) correspond to certain constant mean curvature surfaces in Euclidean 3-space.  Spectral data for such solutions are defined (following ideas of Hitchin and Bobenko) and the space of spectral data is described by an asymptotic characterization.  Using methods of asymptotic estimates, the inverse problem for the spectral data is solved along a line, i.e. the solution u is reconstructed on a line from the spectral data.  Finally, a Jacobi variety and Abel map for the spectral curve are constructed and used to describe the change of the spectral data under translation of the solution u.  The book's primary audience will be research mathematicians interested in the theory of infinite-dimensional integrable systems, or in the geometry of constant mean curvature surfaces. 
 

Caracteristici

Features a self-contained elaboration of the spectral theory for a specific integrable system Provides detailed proofs of all necessary asymptotic estimates Includes a complete treatment of singular spectral curves