Cantitate/Preț
Produs

Abelian Group Theory: Proceedings of the 2nd New Mexico State University Conference, held at LasCruces, New Mexico, December 9 - 12, 1976: Lecture Notes in Mathematics, cartea 616

Editat de D. Arnold, R. Hunter, E. Walker
en Limba Engleză Paperback – oct 1977

Din seria Lecture Notes in Mathematics

Preț: 41579 lei

Nou

Puncte Express: 624

Preț estimativ în valută:
7960 8186$ 6603£

Carte tipărită la comandă

Livrare economică 19 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540084471
ISBN-10: 3540084479
Pagini: 436
Ilustrații: XII, 424 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.61 kg
Ediția:1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

The structure of mixed abelian groups.- Decomposition bases and Ulm’s theorem.- The structure of p-trees: Algebraic systems related to abelian groups.- A Guide to valuated groups.- Warfield modules.- Finite valuated groups.- Criteria for freeness in groups and valuated vector spaces.- Subfree valued vector spaces.- On classifying torsion free modules over discrete valuation rings.- A sheaf - Theoretic interpretation of the kuroš theorem.- Genera and direct sum decompositions of torsion free modules.- Quasi-pure-injectivity and quasi-pure projectivity.- Sur les groupes quasi-p-nets injectifs et projectifs.- Whitehead’s problem.- Methods of logic in abelian group theory.- Abelian structures I.- The number of ? — Free abelian groups and the size of Ext.- The Jacobson radical of some endomorphism rings.- Ulm valuations and co-valuations on torsion-complete p-groups.- A result on problem 87 of L. Fuchs.- Local-quasi-endomorphism rings of rank one mixed abelian groups.- Homological dimension and abelian groups.- A galois correspondence in abelian groups.- A different completion functor.- Analogues of the Stacked Bases Theorem.- Commutative rings whose finitely generated modules are direct sums of cyclics.