Advanced Machine Learning for Cyber-Attack Detection in IoT Networks
Editat de Dinh Thai Hoang, Nguyen Quang Hieu, Diep N. Nguyen, Ekram Hossainen Limba Engleză Paperback – iun 2025
- Presents a comprehensive overview of research on IoT security threats and potential attacks
- Investigates machine learning techniques, their mathematical foundations, and their application in cybersecurity
- Presents metrics for evaluating the performance of machine learning models as well as benchmark datasets and evaluation frameworks for assessing IoT systems
Preț: 840.13 lei
Preț vechi: 1050.16 lei
-20% Nou
Puncte Express: 1260
Preț estimativ în valută:
160.78€ • 167.64$ • 133.62£
160.78€ • 167.64$ • 133.62£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443290329
ISBN-10: 0443290326
Pagini: 300
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0443290326
Pagini: 300
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
Cuprins
1. Machine Learning for Cyber-Attack Detection in IoT Networks: An Overview
2. Evaluation and Performance Metrics for IoT Security Networks
3. Adversarial Machine Learning Techniques for the Industrial IoT Paradigm
4. Federated Learning for Distributed Intrusion Detection in IoT Networks
5. Safeguarding IoT Networks with Generative Adversarial Networks
6. Meta-Learning for Cyber-Attack Detection in IoT Networks
7. Transfer Learning with CNN for Cyberattack Detection in IoT Networks
8. Lightweight Intrusion Detection Methods Based on Artificial Intelligence for IoT Networks
9. A New Federated Learning System with Attention-Aware Aggregation Method for Intrusion Detection Systems
10. Enhancing Intrusion Detection using Improved Sparrow Search Algorithm with Deep Learning on Internet of Things Environment
11. Advancing Cyberattack Detection for In-Vehicle Network: A Comparative Study of Machine Learning-based Intrusion Detection System
12. Practical Approaches Towards IoT Dataset Generation for Security Experiments
13. Challenges and Potential Research Directions for Machine Learning-based Cyber-Attack Detection in IoT Networks
2. Evaluation and Performance Metrics for IoT Security Networks
3. Adversarial Machine Learning Techniques for the Industrial IoT Paradigm
4. Federated Learning for Distributed Intrusion Detection in IoT Networks
5. Safeguarding IoT Networks with Generative Adversarial Networks
6. Meta-Learning for Cyber-Attack Detection in IoT Networks
7. Transfer Learning with CNN for Cyberattack Detection in IoT Networks
8. Lightweight Intrusion Detection Methods Based on Artificial Intelligence for IoT Networks
9. A New Federated Learning System with Attention-Aware Aggregation Method for Intrusion Detection Systems
10. Enhancing Intrusion Detection using Improved Sparrow Search Algorithm with Deep Learning on Internet of Things Environment
11. Advancing Cyberattack Detection for In-Vehicle Network: A Comparative Study of Machine Learning-based Intrusion Detection System
12. Practical Approaches Towards IoT Dataset Generation for Security Experiments
13. Challenges and Potential Research Directions for Machine Learning-based Cyber-Attack Detection in IoT Networks