Cantitate/Preț
Produs

Advanced MOS Devices and their Circuit Applications

Editat de Ankur Beohar, Ribu Mathew, Abhishek Kumar Upadhyay, Santosh Kumar Vishvakarma
en Limba Engleză Hardback – 8 ian 2024
This text comprehensively discusses the advanced MOS devices and their circuit applications with reliability concerns. Further, an energy-efficient Tunnel FET-based circuit application will be investigated in terms of the output voltage, power efficiency, energy consumption, and performances using the device circuit co-design approach.
The book:
  • Discusses advanced MOS devices and their circuit design for energy- efficient systems on chips (SoCs)
  • Covers MOS devices, materials, and related semiconductor transistor technologies for the next-generation ultra-low-power applications
  • Examines the use of field-effect transistors for biosensing circuit applications and covers reliability design considerations and compact modeling of advanced low-power MOS transistors
  • Includes research problem statements with specifications and commercially available industry data in the appendix
  • Presents Verilog-A model-based simulations for circuit analysis
The volume provides detailed discussions of DC and analog/RF characteristics, effects of trap-assisted tunneling (TAT) for reliability analysis, spacer-underlap engineering methodology, doping profile analysis, and work-function techniques. It further covers novel MOS devices including FinFET, Graphene field-effect transistor, Tunnel FETS, and Flash memory devices. It will serve as an ideal design book for senior undergraduate students, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering, materials science, nanoscience, and nanotechnology.
Citește tot Restrânge

Preț: 68405 lei

Preț vechi: 80477 lei
-15% Nou

Puncte Express: 1026

Preț estimativ în valută:
13091 13598$ 10874£

Carte tipărită la comandă

Livrare economică 04-18 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032392851
ISBN-10: 1032392851
Pagini: 160
Ilustrații: 25 Tables, black and white; 84 Line drawings, black and white; 25 Halftones, black and white; 72 Illustrations, color; 37 Illustrations, black and white
Dimensiuni: 156 x 234 x 11 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Public țintă

Postgraduate and Undergraduate Advanced

Cuprins

Chapter 1
An Overview of DC/RF Performance of Nanosheet Field Effect Transistor for Future Low Power Applications
Arun A V,  Sajeesh M,  Jobymol Jacob,  J Ajayan
 
Chapter 2
Device Design and Analysis of 3D SCwRD Cylindrical (Cyl) Gate-All-Around (GAA) Tunnel FET using Split-Channel and spacer  Engineering
Ankur Beohar, Seema Tiwari,  Kavita Khare,  Santosh Kumar Vishvakarma
 
Chapter 3
Investigation of High-K Dielectrics for Single and Multi-Gate FETs
Sresta Valasa, Shubham Tayal,  Laxman Raju Thoutam
 
Chapter 4
Measurement of Back Gate Biasing For Ultra Low Power Subthreshold Logic in FinFET Device
Ajay Kumar Dadoria, Uday Panwar, Narendra Kumar Garg
 
Chapter 5
Compact Analytical Model for Graphene Field Effect Transistor: Drift-Diffusion Approac
Abhishek Kumar Upadhyay1, Siromani Balmukund Rahi, Billel
 
Chapter 6
Design of CNTFET-Based Ternary Logic Flip-Flop and Counter Circuits using Unary Operators
Trapti Sharma
 
Chapter 7
NOVEL RADIATION HARDENED LOW POWER 12 TRANSISTORS SRAM CELL FOR AEROSPACE APPLICATION
Vancha sharath reddy, Arjun singh yadav, Soumya sengupta
 
Chapter 8
Nanoscale CMOS Static Random Access Memory (SRAM) Design: Trends and Challenges
Sunanda Ambulkar, Jeetendra Kumar Mishra
 
Chapter 9
Variants based Gate Modification (VGM) technique for reducing leakage power and short channel effect in DSM circuits
Uday Panwar, Ajay Kumar Dadoria
 
Chapter 10
A Novel Approach for High Speed and low Power by using Nano-VLSI Interconnects
Narendra Kumar Garg , Vivek Singh Kushwah, Ajay Kumar Dadoria

Notă biografică

Dr. Ankur Beohar (Senior member IEEE) obtaineda PhD degree in electrical engineering from the Indian Institute of Technology (IIT), Indore, MP, India, in 2018. After getting his PhD, he worked as a postdoctoral fellow in the Device Modeling Group, IISER, Bhopal, and then as a research scientist for one year under awarded Scientist Pool scheme of Council of Scientific and Industrial Research (CSIR), New Delhi. Currently, he is working as an assistant professor at Vellore Institute of Technology (VIT) Bhopal. He is an IEEE Senior Member and a Secretary of IEEE, Circuit and System Society, MP section, India. He completed his M.Tech degree in VLSI and Embedded System Design from MANIT Bhopal and B.Tech (Electronics) from RGPV University Bhopal in 2010 and 2005. He has a research and academic work experience of more than 13 years. He has a renowned research experience in the field of low-power device circuit design Memory Circuit Design and Reliability. His current research is related to new-generation innovative devices, such as optimization of gate all around (GAA)-Tunnel field effect transistor (TFET) with spacer engineering and its circuit applications. Currently, he is working in the research project sanctioned by the Science and Engineering Research Board (SERB) under the Teachers Associateship Research Excellence (TARE) scheme. Dr. Beohar has published more than 35 research publications in various peer- reviewed international conferences and SCI journals. Along with this, he has reviewed more than 100+ journal and conferences articles.
Dr. Abhishek Kumar Upadhyay obtained a PhD in electrical engineering from the Indian Institute of Technology (IIT), Indore, MP, India, in 2019. After getting his PhD, he worked for one year as a postdoctoral fellow in the Model Group, Material to System Integration Laboratory, University of Bordeaux, France, and then as a staff scientist in the Chair of Electronics Devices and Integrated Circuits at Technische Universität Dresden, Germany, for two years. Currently he is working as an R&D rngineer in X-FAB GmbH, Dresden, Germany. He is the author of several research articles.
Dr. Ribu Mathew holds a doctorate degree in electronics engineering from Vellore Institute of Technology (VIT) University, Chennai Campus. A gold medallist in his post graduation, Dr. Mathew completed his MTech in VLSI design and BTech in electronics and communication engineering. In his doctoral research work, he has contributed in the field of design, modelling, and fabrication of NEMS technology piezoresistive readout-based nano cantilever sensors for chemical and biological sensing applications. In addition to the compu- tational knowledge in industrial standard NEMS devices, he has gained experience in NEMS/IC layout tools and clean room fabrication technologies from CeNSE, IISc Bangalore. He has published several research papers in reputed international journals and conferences. His research areas include the design, modelling, and fabrication of MEMS/NEMS technology- based sensor and actuator systems, especially micro/nano cantilever and diaphragm-based devices, bio-MEMS, analog/RF IC design, SoC design, and device modeling. Currently he is working as an Associate Professor, MAHE, MANIPAL University, Karnataka.
Professor Santosh Kumar Vishvakarma received the BSc in electronics from the University of Gorakhpur, Gorakhpur, in 1999, the MSc in electronics from Devi Ahilya Vishwavidyalaya, Indore, India, in 2001, the MTech in microelectronics from Punjab University, Chandigarh, India, in 2003, and the PhD in microelectronics and VLSI from the Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, India, in 2010. From 2009 to 2010, he was with University Graduate Center, Kjeller, Norway, as a postdoctoral fellow under European Union COMON project. Professor Vishvakarma is with the Department of Electrical Engineering, Indian Institute of Technology Indore, MP, India as a professor at IIT Indore. He is leading the Nanoscale Devices and VLSI Circuit and System Design (NSDCS) Laboratory since 2010. He is engaged with teaching and research in the areas of:
  • Energy-efficient and reliable SRAM memory design
  • Enhancing performance and configurable architecture for DNN accelerators
  • SRAM based in-memory computing architecture for edge AI
  • Reliable, secure design for IoT applications
  • Design for reliability
He has supervised a total of seventeen PhD students, and currently six students are working with his group. He has authored or co-authored more than 175 research papers in peer-reviewed international journals and conferences. He was also granted 04 Indian Patent from IIT Indore and has thirteen sponsored research projects. He is a senior member of IEEE, professional member of VLSI Society of India, associate member of Institute of Nanotechnology, and life member of Indian Microelectronics Society (IMS), India.




Descriere

The text comprehensively discusses the advanced MOS devices and their circuit applications with reliability concerns. Further, an energy-efficient Tunnel FET-based circuit application will investigate in terms of the output voltage, power efficiency, energy consumption, and performances using the device circuit co-design approach.