Advances in Machine Learning and Image Analysis for GeoAI
Editat de Saurabh Prasad, Jocelyn Chanussot, Jun Lien Limba Engleză Paperback – 29 apr 2024
- Covers the latest machine learning and signal processing techniques that can effectively leverage multimodal geospatial imagery at scale
- Chapters cover a variety of algorithmic frameworks pertaining to GeoAI, including superresolution, self-supervised learning, data fusion, explainable AI, among others
- Presents cutting-edge deep learning architectures optimized for a wide array of geospatial imagery
Preț: 732.71 lei
Preț vechi: 805.17 lei
-9% Nou
Puncte Express: 1099
Preț estimativ în valută:
140.27€ • 145.80$ • 116.30£
140.27€ • 145.80$ • 116.30£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443190773
ISBN-10: 0443190771
Pagini: 364
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443190771
Pagini: 364
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. Introduction 2. Deep Learning for Super-resolution in Remote Sensing 3. Few-Shot Open-Set Recognition of Hyperspectral Images 4. Deep Semantic Segmentation Networks for GeoAI: Impact of Design Choices on Segmentation Performance 5. Estimation of Class Priors for Improving Classification Accuracy 6. Benchmarking and end-to-end considerations for GeoAI-enabled decision making 7. Explainable AI for Earth Observation: Current Methods, Open Challenges, and Opportunities 8. Self-supervised Contrastive Learning for Wildfire Detection: Utility and Limitations 9. Multi-Modal Deep Learning for GeoAI 10. The Power of Voting - Ensemble Learning in Remote Sensing 11. Language and Remote Sensing 12. Spectral Unmixing for Geospatial Image Analysis 13. Applying GeoAI for Effective Large-Scale Wetland Monitoring 14. Leveraging ML approaches for scaling climate data in an atmospheric urban digital twin framework