Cantitate/Preț
Produs

Advances in Swarm Intelligence for Optimizing Problems in Computer Science

Editat de Anand Nayyar, Dac-Nhuong Le, Nhu Gia Nguyen
en Limba Engleză Hardback – 18 sep 2018
This book provides comprehensive details of all Swarm Intelligence based Techniques available till date in a comprehensive manner along with their mathematical proofs. It will act as a foundation for authors, researchers and industry professionals. This monograph will present the latest state of the art research being done on varied Intelligent Technologies like sensor networks, machine learning, optical fiber communications, digital signal processing, image processing and many more.
Citește tot Restrânge

Preț: 83962 lei

Preț vechi: 122281 lei
-31% Nou

Puncte Express: 1259

Preț estimativ în valută:
16068 16673$ 13430£

Carte tipărită la comandă

Livrare economică 17-31 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138482517
ISBN-10: 113848251X
Pagini: 312
Ilustrații: 3 Tables, black and white; 51 Illustrations, black and white
Dimensiuni: 156 x 234 x 20 mm
Greutate: 0.57 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC

Cuprins

Contents
List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv
1. Evolutionary Computation: Theory and Algorithms . . . . . . . . . . . . . . . .1
Anand Nayyar, Surbhi Garg, Deepak Gupta and Ashish Khanna
1.1 History of Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . .2
1.2 Motivation via Biological Evidence . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Why Evolutionary Computing?. . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.4 Concept of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . .6
1.5 Components of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . .9
1.6 Working of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . .13
1.7 Evolutionary Computation Techniques and Paradigms. . . . . . . 15
1.8 Applications of Evolutionary Computing . . . . . . . . . . . . . . . . . .21
1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2. Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Sandeep Kumar, Sanjay Jain and Harish Sharma
2.1 Overview of Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . .26
2.2 Genetic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.3 Derivation of Simple Genetic Algorithm . . . . . . . . . . . . . . . . . . .38
2.4 Genetic Algorithms vs. Other Optimization Techniques . . . . . . 42
2.5 Pros and Cons of Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . .44
2.6 Hybrid Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2.7 Possible Applications of Computer Science via Genetic
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3. Introduction to Swarm Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Anand Nayyar and Gia Nhu Nguyen
3.1 Biological Foundations of Swarm Intelligence . . . . . . . . . . . . . . .52
3.2 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
3.3 Concept of Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
3.4 Collective Intelligence of Natural Animals. . . . . . . . . . . . . . . . . .62
3.5 Concept of Self-Organization in Social Insects. . . . . . . . . . . . . . .67
3.6 Adaptability and Diversity in Swarm Intelligence . . . . . . . . . . .68
3.7 Issues Concerning Swarm Intelligence . . . . . . . . . . . . . . . . . . . . .70
3.8 Future Swarm Intelligence in Robotics – Swarm Robotics . . . . . 71
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4. Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Bandana Mahapatra and Srikanta Pattnaik
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
4.2 Concept of Artificial Ants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
4.3 Foraging Behavior of Ants and Estimating Effective Paths . . . . 81
4.4 ACO Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
4.5 ACO Applied Toward Travelling Salesperson Problem. . . . . . . 89
4.6 ACO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
4.7 The Ant Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
4.8 Comparison of Ant Colony Optimization Algorithms . . . . . . . .95
4.9 ACO for NP Hard Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
4.10 Current Trends in ACO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
4.11 Application of ACO in Different Fields . . . . . . . . . . . . . . . . . . .104
4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5. Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
M. B. Shanthi, D. Komagal Meenakshi and PremKumar
5.1 Particle Swarm Optimization – Basic Concepts . . . . . . . . . . . . .113
5.2 PSO Variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
5.3 Particle Swarm Optimization (PSO) – Advanced Concepts . . . 131
5.4 Applications of PSO in Various Engineering Domains. . . . . . .136
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6. Artificial Bee Colony, Firefly Swarm Optimization, and Bat
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
Sandeep Kumar and Rajani Kumari
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
6.2 The Artificial Bee Colony Algorithm. . . . . . . . . . . . . . . . . . . . . .143
6.3 The Firefly Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
6.4 The Bat Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7. Cuckoo Search Algorithm, Glowworm Algorithm,
WASP, and Fish Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . .179
Akshi Kumar
7.1 Introduction to Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
7.2 Cuckoo Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
7.3 Glowworm Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
7.4 Wasp Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
7.5 Fish Swarm Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8. Misc. Swarm Intelligence Techniques . . . . . . . . . . . . . . . . . . . . . . . . . .221
M. Balamurugan, S. Narendiran and Sarat Kumar Sahoo
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
8.2 Termite Hill Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
8.3 Cockroach Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . .226
8.4 Bumblebee Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
8.5 Social Spider Optimization Algorithm . . . . . . . . . . . . . . . . . . . .230
8.6 Cat Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233
8.7 Monkey Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
8.8 Intelligent Water Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
8.9 Dolphin Echolocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
8.10 Biogeography-Based Optimization . . . . . . . . . . . . . . . . . . . . . . .240
8.11 Paddy Field Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243
8.12 Weightless Swarm Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .244
8.13 Eagle Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
8.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
9. Swarm Intelligence Techniques for Optimizing Problems. . . . . . . . .249
K. Vikram and Sarat Kumar Sahoo
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249
9.2 Swarm Intelligence for Communication Networks. . . . . . . . . .250
9.3 Swarm Intelligence in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . .253
9.4 Swarm Intelligence in Data Mining. . . . . . . . . . . . . . . . . . . . . . .257
9.5 Swarm Intelligence and Big Data. . . . . . . . . . . . . . . . . . . . . . . . .260
9.6 Swarm Intelligence in Artificial Intelligence (AI) . . . . . . . . . . .264
9.7 Swarm Intelligence and the Internet of Things (IoT). . . . . . . . .266
9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274

Descriere

This book provides comprehensive details of all Swarm Intelligence based Techniques available till date in a comprehensive manner along with their mathematical proofs. It will act as foundation for authors, researchers and industry professionals.