Cantitate/Preț
Produs

Agents and Implications of Landscape Pattern: Working Models for Landscape Ecology

Autor Dean L Urban
en Limba Engleză Hardback – 12 oct 2023
This is an ecology textbook focused on key principles that underpin research and management at the landscape scale. It covers (1) agents of pattern (the physical template, biotic processes, and disturbance regimes); (2) scale and pattern (why scale matters, how to ‘scale’ with data, and inferences using landscape pattern metrics); and (3) implications of pattern (for metapopulations, communities and biodiversity, and ecosystem processes). The last two chapters address emerging issues:  urban landscapes, and adapting to climate change. 
This book stems from two graduate-level courses in Landscape Ecology taught at the Nicholas School of the Environment at Duke University. The subject has evolved over time, from a concepts-based overview of what landscape ecology is, to a more applied practicum on how one does landscape ecology. As landscape ecology has matured as a discipline, its perspectives on spatial heterogeneity and scale have begun to permeate intoa wide range of other fields including conservation biology, ecosystem management, and ecological restoration. Thus, this textbook will bring students from diverse backgrounds to a common level of understanding and will prepare them with the practical knowledge for a career in conservation and ecosystem management.

Citește tot Restrânge

Preț: 63609 lei

Preț vechi: 74834 lei
-15% Nou

Puncte Express: 954

Preț estimativ în valută:
12177 12658$ 10096£

Carte tipărită la comandă

Livrare economică 06-20 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031402531
ISBN-10: 3031402537
Pagini: 327
Ilustrații: XIX, 327 p. 20 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.66 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

The Physical Template of Landscapes .- 1.1. Introduction .- 1.2. Gradient Analysis  .- 1.2.1. Gradient Complexes  .- 1.3. The Water Balance .- 1.3.1. A Simple Model: PET = AET + Deficit  .- 1.4. Estimating Elements of the Template .- 1.4.1. Temperature  .- 1.4.2. Radiation  .- 1.4.3. Precipitation  .- 1.4.4. Soils  .- 1.5. Case Study: the Sierra Nevada .- 1.5.1. The Physical Template of the Sierra Nevada  .- 1.6. Summary and Conclusions  .- References .- Biotic Processes as Agents of Pattern  .- 2.1. Introduction .- 2.2. The “Pattern and Process” Paradigm .- 2.3. Coupling of Demographic Processes  .- 2.4. Interaction with the Physical Template .- 2.4.1. Coupling Demography and the Physical Template  .- 2.4.2. Competition along Environmental Gradients  .- 2.4.3. Illustration: Gradient Response in the Sierra Nevada .- 2.4.4. The Unit Pattern Revisited .- 2.5. Dispersal as an Agent of Pattern .- 2.6. Animals, Pests, and Pathogens  .- 2.6.1. Animals, Pests and Pathogens as Subtle Agents .- 2.6.2. Animals as Dramatic Agents  .- 2.7. Summary and Conclusions  .- References  .- Disturbances and Disturbance Regimes .- 3.1. Introduction .- 3.1.1 Context and Definitions  .- 3.2. Perspectives and Lessons  .- 3.2.1. Are Disturbances “Part of the System”? .- 3.2.2. Interactions, Synergies, and Indirect Effects  .- 3.2.3. Disturbances and Positive Feedbacks  .- 3.2.4. Overlapping Disturbances and Legacies  .- 3.2.5. Heterogeneity in Disturbance and Response  .- 3.3. Disaggregating Disturbance toward Generality. 3.3.1 A Not-too-General Model.- 3.3.2. The Fire Regime in the Sierra Nevada  .- 3.4. Characteristic Dynamics  .- 3.5. Humans and Disturbance Regimes  .- 3.5.1. Human Impacts on Natural Disturbances - 3.5.2. Novel Disturbance Regimes  .- 3.5.3 Human Perception and Landscape Change          .- 3.6.Agents of Pattern: Reprise  .- 3.7. Summary and Conclusions  .- References 78.- 4. Scale and Scaling - 4.1. Introduction.- 4.2. The Importance of Scale in Ecology.- 4.2.1. Observational Scale as a Filter on Nature.- 4.2.2. Characteristic Scaling.- 4.2.3. Sampling Grain and Extent, and Statistical Behavior  .- 4.3. Scaling Techniques  .- 4.3.1. Scaling Techniques for Geostatistical Data.- 4.3.2. Illustration: Scaling of the Sierran Physical Template.- 4.4. Tactical Scaling.- 4.4.1. Tactical Targeting of Sampling Scale(s)  .- 4.4.2. Avoid or Embrace Space?  .- 4.5. Summary and Conclusions  .- References  .- 5. Inferences on Landscape Pattern.- 5.1. Introduction.- 5.2. Patchiness and Patches  .- 5.2.1. Patch Definition  .- 5.3. Landscape Pattern Metrics  .- 5.3.1. Levels of Analysis  .- 5.3.2. Components of Pattern  .- 5.3.2 Correlation and Redundancy  .- 5.3.4. Alternative Framings for Landscape Pattern  .- 5.4. Interpreting Landscape Metrics  .- 5.4.1. Neutral Models and Neutral Landscapes  .- 5.4.2. Neutral Templates for Landscape Processes  .- 5.4.3. Extending Neutral Models: Agents of Pattern.- 5.5. Explanatory Models and Inferences  .- 5.5.1. Approaches to Inferences on Pattern.-  5.5.2. Illustrations  .- 5.5. Explanatory Models and Inferences  .-
.- 5.5.1. Approaches to Inferences on Pattern  .- 5.5.2. Illustrations  .- 5.5.3. Inferences on Pattern: Area versus Configuration.- 5.5.4 Inferences on Pattern: the State-of-the-Art.- 5.6. Summary and Conclusions. References .- Implications of Pattern: Metapopulations  .- 6.1. Introduction.- 6.2. Metapopulations in Theory .- 6.2.1. The Levins Model.- 6.2.2. The Spreading-of-Risk Model  .- 6.2.3. The Source-Sink Model.- 6.2.4. The Incidence Function Model .- 6.2.5. Commonalities among Metapopulation Models.- 6.2.6. Characteristic Behaviors of (Model) Metapopulations .- 6.3. Metapopulations in Practice  .- 6.3.1. Are there Real Metapopulations in Nature? .- 6.3.2. Macroscopic Approaches to Metapopulations  .- 6.4. Network Models of Metapopulations .- 6.4.1. Graphs and Metapopulations  .- 6.5. Metapopulations and Connectivity Conservation  .- 6.5.1. Structural and Functional Connectivity  .- 6.5.2. Metapopulations and Landscape Genetics .- 6.6. A Model Template for Applications .- 6.7. Summary and Conclusions  .- References  .- Supplement 6.1. Details on the Metapopulation Models .- S6.1.1. The Levins Model .- S6.1.2. The Spreading-of-Risk Model .- S6.2.3. The Source-Sink Model .- S6.2.4. The Incidence Function Model .- S6.2.5. Notes on the Individual-based Simulators Metapop1  .- Communities and Patterns of Biodiversity  .- 7.1. Introduction .- 7.2. Island Biogeography and Landscapes.- 7.2.1. Area and Isolation Effects  .- 7.2.2. Island Biogeographic Theory and the SLOSS Debate  .- 7.2.3. A Diversity of Diversities  .- 7.3. Perspectives on Metacommunities  .- 7.3.1. A General Framing  .- 7.3.2. Inferences and Limits to Inference  .- 7.4. Approaches and Lines of Evidence .- 7.4.1. The Incidence Matrix and Community Assembly .- 7.4.2. Metacommunity Models: Variations on a Theme .- 7.4.3. Species Distribution Models .- 7.4.4. Multvariate Approaches to Partitioning Beta-diversity  .- 7.4.5. Lines of Evidence and Complementary Analyses  .- 7.5. Illustration: Sierran Forests .- 7.5.1. The Perspective of Ordination and Gradient Analysis .- 7.5.2. Partitioning Beta-diversity .- 7.6. Managing Metacommunities  .- 7.7. Summary and Conclusions  .- References.- Supplement 7.1. Disciplinary Approaches (Details)  .- S7.1.1. Incidence Matrices and Community Assembly.- S7.1.2. Metacommunity Models: Variations  .- S7.1.3. Species Distribution Models  .- S7.1.4. Ordination Techniques  .- IImplications of Pattern for Ecosystems  .- 8.1. Introduction .- 8.2. Spatial Heterogeneity and Ecosystems  .- 8.2.1. Spatial Heterogeneity in the Physical Template .- 8.2.2. Lateral Fluxes on Landscapes .- 8.2.3. Landform and Landscape Processes  .- 8.2.4. Ecosystem Processes and Positive Feedbacks .- 8.2.5. Ecosystems are both Fast and Slow .- 8.3. Ecosystems and Landscape Legacies  .- 8.4. Patch Juxtaposition and Edge Effects  .- 8.4.1. Edge Effects, Revisited .- 8.4.2. Edges and Ecosystem Processes: Forest Carbon .- 8.5. Ecosystems and Meta-ecosystems .- 8.5.1. Couplings between Systems .- 8.5.2. Meta-ecosystems, Revisited  .- 8.5.3. Implications of Meta-ecosystem Structure  .- 8.6. Summary and Conclusions .- References .- Urban Landscapes .- 9.1. Introduction .- 9.2. Social-Environmental Systems .- 9.2.1. Approaches to Studying Cities  .- 9.3. Agents and Implications of Pattern .- 9.3.1. Agents of Pattern  .- 9.3.2. Scale and Pattern .- 9.3.3. Implications of Pattern .- 9.3.4. Revisiting the Agents-and-Implications Framing .- 9.4. Urban Landscapes as Laboratories  .- 9.4.1. The Urban Stream Syndrome  .- 9.4.2. Cities as Mesocosms for Global Change .- 9.5. Summary and Conclusions  .- References.- 10. Climate Change: Adapting for Resilience  .- 10.1 Introduction .- 10.2. Framing Adaptation  .- 10.2.1. Components of Climate Change .- 10.2.2. The Perspective of Risk Management  .- 10.2.3. Options for Response and Adaptation  .- 10.2.4. Resilience Planning: the Tasks at Hand .- 10.3. Approaches to Adaptation Planning  .- 10.3.1. Levels of Activity and Currency of Assessments  .- 10.3.2. Elements of Adaptation  .- 10.3.3. A Template for Applications .- 10.4. Illustrations of Approaches  .- 10.4.1. NatureServe’s HCCVI.- 10.4.2. Species Range Shifts implied by Climate Change  .- 10.4.3. TNC’s Resilient Landscapes Initiative  .- 10.4.4. The ACT Framework .- 10.4.5. Complementarity of Approaches .- 10.5. CollateralBenefits and Leverage.- 10.5.1. Adaptation Planning and Conservation Practice  .- 10.5.2. Collateral Benefits.- 10.5.3. Adaptation and Mitigation .- 10.6. Summary and Conclusions .- References  .- Index.. 

Notă biografică

Dean Urban is Professor of Landscape Ecology in the Nicholas School of the Environment at Duke University.  His research focuses on devising innovative and rigorous approaches to applications of immediate practical concern. His research tools include habitat classification and mapping, site prioritization, spatial simulation, and integrated assessment. A hallmark of his work is integrated studies that extrapolate our fine-scale empirical understanding of environmental issues to the larger space and time scales of management and policy. Most of his work in landscape ecology has explored the causes and consequences of spatial pattern in forest systems. Specific interests include the implications of climate change for forest ecosystems, and the consequences of land use pattern on forest habitat connectivity and watershed function in developed landscapes. His current research focus is how land use affects the provision of ecosystem services, and in reconciling human institutions with natural systems. 

Textul de pe ultima copertă

This is an ecology textbook focused on key principles that underpin research and management at the landscape scale. It covers (1) agents of pattern (the physical template, biotic processes, and disturbance regimes); (2) scale and pattern (why scale matters, how to ‘scale’ with data, and inferences using landscape pattern metrics); and (3) implications of pattern (for metapopulations, communities and biodiversity, and ecosystem processes). The last two chapters address emerging issues:  urban landscapes, and adapting to climate change. 
This book stems from two graduate-level courses in Landscape Ecology taught at the Nicholas School of the Environment at Duke University. The subject has evolved over time, from a concepts-based overview of what landscape ecology is, to a more applied practicum on how one does landscape ecology. As landscape ecology has matured as a discipline, its perspectives on spatial heterogeneity and scale have begun topermeate into a wide range of other fields including conservation biology, ecosystem management, and ecological restoration. Thus, this textbook will bring students from diverse backgrounds to a common level of understanding and will prepare them with the practical knowledge for a career in conservation and ecosystem management.


Caracteristici

Synthesis of a wide range of materials from multiple subdisciplines within ecology Focus on working at large scale with “need to know” screening of ideas Provision of heuristic ‘working model’ schematics that can be adapted to any landscape