Algorithmic High-Dimensional Robust Statistics
Autor Ilias Diakonikolas, Daniel M. Kaneen Limba Engleză Hardback – 6 sep 2023
Preț: 299.94 lei
Preț vechi: 374.93 lei
-20% Nou
Puncte Express: 450
Preț estimativ în valută:
57.39€ • 60.61$ • 47.76£
57.39€ • 60.61$ • 47.76£
Carte tipărită la comandă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781108837811
ISBN-10: 1108837816
Pagini: 300
Dimensiuni: 237 x 160 x 24 mm
Greutate: 0.57 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1108837816
Pagini: 300
Dimensiuni: 237 x 160 x 24 mm
Greutate: 0.57 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
1. Introduction to robust statistics; 2. Efficient high-dimensional robust mean estimation; 3. Algorithmic refinements in robust mean estimation; 4. Robust covariance estimation; 5. List-decodable learning; 6. Robust estimation via higher moments; 7. Robust supervised learning; 8. Information-computation tradeoffs in high-dimensional robust statistics; A. Mathematical background; References; Index.
Recenzii
'This is a timely book on efficient algorithms for computing robust statistics from noisy data. It presents lucid intuitive descriptions of the algorithms as well as precise statements of results with rigorous proofs - a nice combination indeed. The topic has seen fundamental breakthroughs over the last few years and the authors are among the leading contributors. The reader will get a ringside view of the developments.' Ravi Kannan, Visiting Professor, Indian Institute of Science
Notă biografică
Descriere
This book presents general principles and scalable methodologies to deal with adversarial outliers in high-dimensional datasets.