Cantitate/Preț
Produs

An excursion into Markov chains: UNITEXT

Autor Marco Ferrante, Xavier Bardina
en Limba Engleză Paperback – 14 iun 3000
This textbook will present, in a rigorous way, the basic theory of the discrete-time and the continuous-time Markov chains, along with many examples and solved problems. For both the topics a simple model, the Random Walk and the Poisson Process respectively, will be used to anticipate and illustrate the most interesting concepts rigorously defined in the following sections. A great attention will be paid to the applications of the theory of the Markov chains and many classical as well as new results will be faced in the book. This textbook is intended for a basic course on stochastic processes at an advanced undergraduate level and the background needed will be a first course in probability theory. A big emphasis is given to the computational approach and to simulations.
Citește tot Restrânge

Din seria UNITEXT

Preț: 22722 lei

Preț vechi: 28858 lei
-21% Nou

Puncte Express: 341

Preț estimativ în valută:
4349 4505$ 3629£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319128313
ISBN-10: 3319128310
Pagini: 250
Ilustrații: Approx. 250 p. 20 illus.
Dimensiuni: 155 x 235 mm
Ediția:1st ed. 2024
Editura: Springer International Publishing
Colecția Springer
Seriile UNITEXT, La Matematica per il 3+2

Locul publicării:Cham, Switzerland

Public țintă

Upper undergraduate

Cuprins

​1. Introduction.- 2. Discrete-time Markov chains.- 2.1. Motivation: the random walk.- 2.2. Definitions. Basic properties. Transition matrix.- 2.3. Stopping time. Strong Markov property.- 2.4. Recurrent and transient states. Equivalence classes.- 2.5. Asymptotic behaviour. Invariant distribution.- 2.6. Ergodic theorem.- 2.7. Mores aspects of the random walk.- 3. Continuous-time Markov chains.- 3.1. Motivation: the Poisson process.- 3.2. Basic properties. Transition matrix. Recurrent and transient states.- 3.3. Invariant distribution.- 3.4. Ergodic theorem.- 3.5. More aspects of the Poisson process.- 4. Applications.- 4.1. Sport modelling.- 4.2. Information retrieval.- 4.3. Weather forecast.

Caracteristici

Provides new application to sports and information retrieval systems Includes over 100 solved problems, with an increasing level of difficulty Attention to the computational approach and its relevance for the mathematical models