Cantitate/Preț
Produs

An Extension of Casson`s Invariant. (AM–126), Volume 126: Annals of Mathematics Studies

Autor K. Walker
en Limba Engleză Paperback – 30 iun 1992
This book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M.
Citește tot Restrânge

Din seria Annals of Mathematics Studies

Preț: 44895 lei

Preț vechi: 55425 lei
-19% Nou

Puncte Express: 673

Preț estimativ în valută:
8595 8844$ 7245£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780691025322
ISBN-10: 0691025320
Pagini: 150
Dimensiuni: 156 x 232 x 13 mm
Greutate: 0.22 kg
Ediția:New.
Editura: Princeton University Press
Seria Annals of Mathematics Studies

Locul publicării:Princeton, United States