An Introduction to Complex Function Theory: Undergraduate Texts in Mathematics
Autor Bruce P. Palkaen Limba Engleză Paperback – 30 sep 2012
Din seria Undergraduate Texts in Mathematics
- 17% Preț: 362.13 lei
- 17% Preț: 365.42 lei
- Preț: 290.80 lei
- Preț: 339.36 lei
- Preț: 351.54 lei
- 17% Preț: 367.24 lei
- Preț: 433.85 lei
- Preț: 304.91 lei
- Preț: 380.26 lei
- Preț: 400.42 lei
- Preț: 372.26 lei
- Preț: 407.96 lei
- Preț: 402.33 lei
- Preț: 370.77 lei
- 13% Preț: 389.61 lei
- 15% Preț: 417.73 lei
- Preț: 364.40 lei
- 17% Preț: 395.93 lei
- Preț: 298.00 lei
- 19% Preț: 400.52 lei
- Preț: 359.48 lei
- Preț: 414.73 lei
- Preț: 440.01 lei
- Preț: 407.62 lei
- 15% Preț: 575.40 lei
- 17% Preț: 373.59 lei
- Preț: 257.71 lei
- Preț: 400.42 lei
- Preț: 358.10 lei
- 17% Preț: 368.60 lei
- 17% Preț: 362.67 lei
- Preț: 424.14 lei
- Preț: 395.09 lei
- 17% Preț: 366.38 lei
- Preț: 332.02 lei
- Preț: 392.32 lei
- Preț: 329.94 lei
- 19% Preț: 492.82 lei
- Preț: 396.24 lei
- Preț: 390.08 lei
- 15% Preț: 521.04 lei
- Preț: 402.00 lei
- 15% Preț: 531.72 lei
- 15% Preț: 447.81 lei
- 15% Preț: 533.53 lei
- Preț: 390.08 lei
Preț: 485.09 lei
Preț vechi: 570.70 lei
-15% Nou
Puncte Express: 728
Preț estimativ în valută:
92.83€ • 95.90$ • 77.26£
92.83€ • 95.90$ • 77.26£
Carte tipărită la comandă
Livrare economică 25 martie-08 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461269670
ISBN-10: 1461269679
Pagini: 584
Ilustrații: XVII, 560 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.81 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461269679
Pagini: 584
Ilustrații: XVII, 560 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.81 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
I The Complex Number System.- 1 The Algebra and Geometry of Complex Numbers.- 2 Exponentials and Logarithms of Complex Numbers.- 3 Functions of a Complex Variable.- 4 Exercises for Chapter I.- II The Rudiments of Plane Topology.- 1 Basic Notation and Terminology.- 2 Continuity and Limits of Functions.- 3 Connected Sets.- 4 Compact Sets.- 5 Exercises for Chapter II.- III Analytic Functions.- 1 Complex Derivatives.- 2 The Cauchy-Riemann Equations.- 3 Exponential and Trigonometric Functions.- 4 Branches of Inverse Functions.- 5 Differentiability in the Real Sense.- 6 Exercises for Chapter III.- IV Complex Integration.- 1 Paths in the Complex Plane.- 2 Integrals Along Paths.- 3 Rectiflable Paths.- 4 Exercises for Chapter IV.- V Cauchy’s Theorem and its Consequences.- 1 The Local Cauchy Theorem.- 2 Winding Numbers and the Local Cauchy Integral Formula.- 3 Consequences of the Local Cauchy Integral Formula.- 4 More About Logarithm and Power Functions.- 5 The Global Cauchy Theorems.- 6 SimplyConnected Domains.- 7 Homotopy and Winding Numbers.- 8 Exercises for Chapter V.- VI Harmonic Functions.- 1 Harmonic Functions.- 2 The Mean Value Property.- 3 The Dirichlet Problem for a Disk.- 4 Exercises for Chapter VI.- VII Sequences and Series of Analytic Functions.- 1 Sequences of Functions.- 2 Infinite Series.- 3 Sequences and Series of Analytic Functions.- 4 Normal Families.- 5 Exercises for Chapter VII.- VIII Isolated Singularities of Analytic Functions.- 1 Zeros of Analytic Functions.- 2 Isolated Singularities.- 3 The Residue Theorem and its Consequences.- 4 Function Theory on the Extended Plane.- 5 Exercises for Chapter VIII.- IX Conformal Mapping.- 1 Conformal Mappings.- 2 Möbius Transformations.- 3 Riemann’s Mapping Theorem.- 4 The Caratheodory-Osgood Theorem.- 5 Conformal Mappings onto Polygons.- 6 Exercises for Chapter IX.- X Constructing Analytic Functions.- 1 The Theorem of Mittag-Leffler.- 2 The Theorem of Weierstrass.- 3 Analytic Continuation.- 4 Exercises for ChapterX.- Appendix A Background on Fields.- 1 Fields.- 1.1 The Field Axioms.- 1.2 Subfields.- 1.3 Isomorphic Fields.- 2 Order in Fields.- 2.1 Ordered Fields.- 2.2 Complete Ordered Fields.- 2.3 Implications for Real Sequences.- Appendix B Winding Numbers Revisited.- 1 Technical Facts About Winding Numbers.- 1.1 The Geometric Interpretation.- 1.2 Winding Numbers and Jordan Curves.