Cantitate/Preț
Produs

An Introduction to Quantum and Vassiliev Knot Invariants: CMS Books in Mathematics

Autor David M. Jackson, Iain Moffatt
en Limba Engleză Hardback – 16 mai 2019
This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.


Citește tot Restrânge

Din seria CMS Books in Mathematics

Preț: 70792 lei

Preț vechi: 93148 lei
-24% Nou

Puncte Express: 1062

Preț estimativ în valută:
13548 14249$ 11285£

Carte tipărită la comandă

Livrare economică 30 decembrie 24 - 06 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030052126
ISBN-10: 3030052125
Pagini: 413
Ilustrații: XX, 422 p. 561 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.83 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria CMS Books in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

Part I Basic Knot Theory.- Knots.- Knot and Link Invariants.- Framed Links.- Braids and the Braid Group.- Part II Quantum Knot Invariants.- R-Matrix Representations of Bn.- Knot Invariants through R-Matrix Representations of Bn.- Operator Invariants.- Ribbon Hopf Algebras.- Reshetikin-Turaev Invariants.- Part III Vassiliev Invarients.- The Fundamentals of Vassiliev Invariants.- Chord Diagrams.- Vassiliev Invariants of Framed Knots.- Jacobi Diagrams.- Lie Algebra Weight Systems.- Part IV The Kontsevich Invariant.- q-tangles.- Jacobi Diagrams on a 1-manifold.- A Construction of the Kontsevich Invariant.- Universality Properties of the Kontsevich Invariant.- Appendix A Background on Modules and Linear Algebra.- Appendix B Rewriting the Definition of Operator Invariants.- Appendix C Computations in Quasi-triangular Hopf Algebras.- Appendix D The Ribbon Hopf Algebra.- Appendix E A Proof of the Invariance of the Reshetikin-Turaev Invariants.

Recenzii

 “This text is a comprehensive and well written introduction to quantum and Vassiliev invariants of knots. … There is sufficient detail for students and exercises. The text is also an excellent reference for researchers interested in quantum and Vassiliev invariants.” (Heather A. Dye, zbMATH 1425.57007, 2019)

Notă biografică

  

Textul de pe ultima copertă

This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.

Caracteristici

Introduces key concepts and constructions both diagrammatic and algebraic in the field Exemplifies aspects of problem solving approaches inherent in mathematics Demonstrates a range of mathematical concepts tangibly through instantiations in context Exposes reader to foundations and applications of mathematical constructions Provides exercises throughout text