An R Companion to Applied Regression
Autor John Fox, Sanford Weisbergen Limba Engleză Paperback – 15 oct 2018
Preț: 723.45 lei
Preț vechi: 841.22 lei
-14% Nou
Puncte Express: 1085
Preț estimativ în valută:
138.45€ • 143.82$ • 115.01£
138.45€ • 143.82$ • 115.01£
Carte disponibilă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781544336473
ISBN-10: 1544336470
Pagini: 608
Dimensiuni: 178 x 254 x 30 mm
Greutate: 1.04 kg
Ediția:Third Edition
Editura: SAGE Publications
Colecția Sage Publications, Inc
Locul publicării:Thousand Oaks, United States
ISBN-10: 1544336470
Pagini: 608
Dimensiuni: 178 x 254 x 30 mm
Greutate: 1.04 kg
Ediția:Third Edition
Editura: SAGE Publications
Colecția Sage Publications, Inc
Locul publicării:Thousand Oaks, United States
Recenzii
“An R Companion to Applied Regression continues to provide the most comprehensive and user-friendly guide to estimating, interpreting, and presenting results from regression models in R.”
“This is the best book I’ve read for teaching the modern practice of regression. By going deeply into both R and applied regression, it manages to use each topic to motivate and illustrate the other. The whole is much greater than sum of the parts because each thread so effectively reinforces the other. There are many nice surprises in this new edition. R Studio and markdown are used to encourage a reproducible workflow. There’s an excellent and accessible chapter on mixed and longitudinal data that expands the reach of regression methods to the much more complex data structures typical of current practice. Like its predecessors, this edition is a model of clear, thoughtful exposition. It’s an outstanding contribution to the teaching and practice of regression.”
“This is an impressive update to a book I have long admired. The authors have brought the description of how to do data analysis and plots of Applied Regression related data to a modern and more comprehensive level.”
“This is the best book I’ve read for teaching the modern practice of regression. By going deeply into both R and applied regression, it manages to use each topic to motivate and illustrate the other. The whole is much greater than sum of the parts because each thread so effectively reinforces the other. There are many nice surprises in this new edition. R Studio and markdown are used to encourage a reproducible workflow. There’s an excellent and accessible chapter on mixed and longitudinal data that expands the reach of regression methods to the much more complex data structures typical of current practice. Like its predecessors, this edition is a model of clear, thoughtful exposition. It’s an outstanding contribution to the teaching and practice of regression.”
“This is an impressive update to a book I have long admired. The authors have brought the description of how to do data analysis and plots of Applied Regression related data to a modern and more comprehensive level.”
Cuprins
1. Getting Started with R and RStudio
Projects in RStudio
R Basics
Fixing Errors and Getting Help
Organizing Your Work in R and RStudio
An Extended Illustration
R Functions for Basic Statistics
Generic Functions and Their Methods*
2. Reading and Manipulating Data
Data Input
Managing Data
Working With Data Frames
Matrices, Arrays, and Lists
Dates and Times
Character Data
Large Data Sets in R*
Complementary Reading and References
3. Exploring and Transforming Data
Examining Distributions
Examining Relationships
Examining Multivariate Data
Transforming Data
Point Labeling and Identication
Scatterplot Smoothing
Complementary Reading and References
4. Fitting Linear Models
The Linear Model
Linear Least-Squares Regression
Predictor Effect Plots
Polynomial Regression and Regression Splines
Factors in Linear Models
Linear Models with Interactions
More on Factors
Too Many Regressors*
The Arguments of the lm Function
Complementary Reading and References
5. Standard Errors, Confidence Intervals, Tests
Coefficient Standard Errors
Confidence Intervals
Testing Hypotheses About Regression Coefficients
Complementary Reading and References
6. Fitting Generalized Linear Models
The Structure of GLMs
The glm() Function in R
GLMs for Binary-Response Data
Binomial Data
Poisson GLMs for Count Data
Loglinear Models for Contingency Tables
Multinomial Response Data
Nested Dichotomies
The Proportional-Odds Model
Extensions
Arguments to glm()
Fitting GLMs by Iterated Weighted Least-Squares*
Complementary Reading and References
7. Fitting Mixed-Effects Models
Background: The Linear Model Revisited
Linear Mixed-Effects Models
Generalized Linear Mixed Models
Complementary Reading
8. Regression Diagnostics
Residuals
Basic Diagnostic Plots
Unusual Data
Transformations After Fitting a Regression Model
Non-Constant Error Variance
Diagnostics for Generalized Linear Models
Diagnostics for Mixed-Effects Models
Collinearity and Variance-Inflation Factors
Additional Regression Diagnostics
Complementary Reading and References
9. Drawing Graphs
A General Approach to R Graphics
Putting It Together: Local Linear Regression
Other R Graphics Packages
Complementary Reading and References
10. An Introduction to R Programming
Why Learn to Program in R?
Defining Functions: Preliminary Examples
Working With Matrices*
Conditionals, Loops, and Recursion
Avoiding Loops
Optimization Problems*
Monte-Carlo Simulations*
Debugging R Code*
Object-Oriented Programming in R*
Writing Statistical-Modeling Functions in R*
Organizing Code for R Functions
Complementary Reading and References
Projects in RStudio
R Basics
Fixing Errors and Getting Help
Organizing Your Work in R and RStudio
An Extended Illustration
R Functions for Basic Statistics
Generic Functions and Their Methods*
2. Reading and Manipulating Data
Data Input
Managing Data
Working With Data Frames
Matrices, Arrays, and Lists
Dates and Times
Character Data
Large Data Sets in R*
Complementary Reading and References
3. Exploring and Transforming Data
Examining Distributions
Examining Relationships
Examining Multivariate Data
Transforming Data
Point Labeling and Identication
Scatterplot Smoothing
Complementary Reading and References
4. Fitting Linear Models
The Linear Model
Linear Least-Squares Regression
Predictor Effect Plots
Polynomial Regression and Regression Splines
Factors in Linear Models
Linear Models with Interactions
More on Factors
Too Many Regressors*
The Arguments of the lm Function
Complementary Reading and References
5. Standard Errors, Confidence Intervals, Tests
Coefficient Standard Errors
Confidence Intervals
Testing Hypotheses About Regression Coefficients
Complementary Reading and References
6. Fitting Generalized Linear Models
The Structure of GLMs
The glm() Function in R
GLMs for Binary-Response Data
Binomial Data
Poisson GLMs for Count Data
Loglinear Models for Contingency Tables
Multinomial Response Data
Nested Dichotomies
The Proportional-Odds Model
Extensions
Arguments to glm()
Fitting GLMs by Iterated Weighted Least-Squares*
Complementary Reading and References
7. Fitting Mixed-Effects Models
Background: The Linear Model Revisited
Linear Mixed-Effects Models
Generalized Linear Mixed Models
Complementary Reading
8. Regression Diagnostics
Residuals
Basic Diagnostic Plots
Unusual Data
Transformations After Fitting a Regression Model
Non-Constant Error Variance
Diagnostics for Generalized Linear Models
Diagnostics for Mixed-Effects Models
Collinearity and Variance-Inflation Factors
Additional Regression Diagnostics
Complementary Reading and References
9. Drawing Graphs
A General Approach to R Graphics
Putting It Together: Local Linear Regression
Other R Graphics Packages
Complementary Reading and References
10. An Introduction to R Programming
Why Learn to Program in R?
Defining Functions: Preliminary Examples
Working With Matrices*
Conditionals, Loops, and Recursion
Avoiding Loops
Optimization Problems*
Monte-Carlo Simulations*
Debugging R Code*
Object-Oriented Programming in R*
Writing Statistical-Modeling Functions in R*
Organizing Code for R Functions
Complementary Reading and References
Notă biografică
Descriere
An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis.