Analog IC Placement Generation via Neural Networks from Unlabeled Data: SpringerBriefs in Applied Sciences and Technology
Autor António Gusmão, Nuno Horta, Nuno Lourenço, Ricardo Martinsen Limba Engleză Paperback – iul 2020
Din seria SpringerBriefs in Applied Sciences and Technology
- Preț: 406.84 lei
- 17% Preț: 360.33 lei
- Preț: 368.67 lei
- Preț: 372.44 lei
- Preț: 141.23 lei
- 20% Preț: 319.71 lei
- Preț: 371.48 lei
- Preț: 195.87 lei
- 20% Preț: 293.83 lei
- Preț: 401.19 lei
- Preț: 338.00 lei
- Preț: 355.48 lei
- Preț: 259.41 lei
- Preț: 374.64 lei
- Preț: 372.44 lei
- Preț: 355.65 lei
- 20% Preț: 220.71 lei
- 20% Preț: 386.11 lei
- Preț: 370.52 lei
- Preț: 370.52 lei
- Preț: 369.99 lei
- Preț: 370.36 lei
- 20% Preț: 301.85 lei
- 15% Preț: 453.19 lei
- Preț: 141.98 lei
- Preț: 369.62 lei
- Preț: 355.92 lei
- Preț: 375.26 lei
- Preț: 370.52 lei
- Preț: 370.52 lei
- Preț: 338.00 lei
- Preț: 372.44 lei
- Preț: 372.65 lei
- Preț: 306.42 lei
- Preț: 375.26 lei
- Preț: 356.42 lei
- Preț: 369.03 lei
- Preț: 404.02 lei
- Preț: 470.02 lei
- Preț: 369.03 lei
- Preț: 273.63 lei
- 20% Preț: 318.12 lei
- Preț: 435.58 lei
- 20% Preț: 282.94 lei
- Preț: 256.59 lei
- Preț: 374.30 lei
- 20% Preț: 315.69 lei
- Preț: 410.85 lei
- Preț: 372.06 lei
- Preț: 366.78 lei
Preț: 316.51 lei
Preț vechi: 395.64 lei
-20% Nou
Puncte Express: 475
Preț estimativ în valută:
60.57€ • 62.92$ • 50.32£
60.57€ • 62.92$ • 50.32£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030500603
ISBN-10: 3030500608
Pagini: 87
Ilustrații: XIII, 87 p. 68 illus., 39 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.16 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Applied Sciences and Technology
Locul publicării:Cham, Switzerland
ISBN-10: 3030500608
Pagini: 87
Ilustrații: XIII, 87 p. 68 illus., 39 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.16 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Applied Sciences and Technology
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Related Work: Machine Learning and Electronic Design Automation.- Unlabeled Data and Artificial Neural Networks.- Placement Loss: Placement Constraints Description and Satisfiability Evaluation.- Experimental Results in Industrial Case Studies.- Conclusions.
Textul de pe ultima copertă
In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the placement task in analog integrated circuit layout design, by creating a generalized model that can generate valid layouts at push-button speed. Further, it exploits ANNs’ generalization and push-button speed prediction (once fully trained) capabilities, and details the optimal description of the input/output data relation. The description developed here is chiefly reflected in two of the system’s characteristics: the shape of the input data and the minimized loss function. In order to address the latter, abstract and segmented descriptions of both the input data and the objective behavior are developed, which allow the model to identify, in newer scenarios, sub-blocks which can be found in the input data. This approach yields device-level descriptions of the input topology that, for each device, focus on describing its relation to every other device in the topology. By means of thesedescriptions, an unfamiliar overall topology can be broken down into devices that are subject to the same constraints as a device in one of the training topologies.
In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model’s effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem’s context (high label production cost), resulting in an efficient, inexpensive and fast model.
Caracteristici
Describes the advances achieved in the field of machine learning and electronic design automation for analog IC Presents innovative research on the use of artificial neural networks (ANNs) Details the optimal description of the input/output data relation