Analysis and Modelling of Discrete Dynamical Systems
Editat de Daniel Benest, Claude Froeschleen Limba Engleză Hardback – 28 oct 1998
Featuring chapters based on lectures delivered at the School on Discrete Dynamical Systems (Aussois, France, February 1996) the book contains three parts - Numerical Tools and Modelling, Analytical Methods, and Examples of Application. It provides a single source of information that, until now, has been available only in widely dispersed journal articles.
Preț: 448.77 lei
Preț vechi: 577.24 lei
-22% Nou
Puncte Express: 673
Preț estimativ în valută:
85.88€ • 89.47$ • 71.41£
85.88€ • 89.47$ • 71.41£
Comandă specială
Livrare economică 20 ianuarie-03 februarie 25
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789056996253
ISBN-10: 9056996258
Pagini: 344
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.65 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 9056996258
Pagini: 344
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.65 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Public țintă
ProfessionalCuprins
1. Part I: Modelling Mappings: An Aim and a Tool for the Study of Dynamical Systems 2. Spectra of Stretching Numbers and Helicity Angles 3. Diffusion and Transient Spectra in a 4-Dimensional Symplectic Mapping 4. Distribution of Periodic Orbits in 2-D Dynamical Systems 5. Symplectic Integrators 6. The Use of Mappings for Stability Problems in Beam Dynamics 7. Part II: Rigorous and Numerical Determination of Rotational Invariant Curves for the Standard Map 8. Interpolation of Discrete Hamiltonian Systems 9. Standard and Anomalous Diffusion in Dynamical Systems 10. Part III: Symplectic Maps and Their Use in Celestial Mechanics 11.
Perturbation Theory for Volume Preserving Maps: Application to the Magnetic Field Lines in Plasma Physics
Perturbation Theory for Volume Preserving Maps: Application to the Magnetic Field Lines in Plasma Physics
Notă biografică
Daniel Benest, Claude Froeschle
Descriere
This comprehensive introduction to the general study of mappings emphasises their applications to the dynamics of the solar system. It forms a bridge between continuous systems, which are suited to analytical developments and to discrete systems,