Cantitate/Preț
Produs

Analysis for Time-to-Event Data under Censoring and Truncation

Autor Hongsheng Dai, Huan Wang
en Limba Engleză Paperback – 25 sep 2016
Survival Analysis for Bivariate Truncated Data provides readers with a comprehensive review on the existing works on survival analysis for truncated data, mainly focusing on the estimation of univariate and bivariate survival function. The most distinguishing feature of survival data is known as censoring, which occurs when the survival time can only be exactly observed within certain time intervals. A second feature is truncation, which is often deliberate and usually due to selection bias in the study design.
Truncation presents itself in different ways. For example, left truncation, which is often due to a so-called late entry bias, occurs when individuals enter a study at a certain age and are followed from this delayed entry time. Right truncation arises when only individuals who experienced the event of interest before a certain time point can be observed. Analyzing truncated survival data without considering the potential selection bias may lead to seriously biased estimates of the time to event of interest and the impact of risk factors.


  • Assists statisticians, epidemiologists, medical researchers, and actuaries who need to understand the mechanism of selection bias
  • Reviews existing works on survival analysis for truncated data, mainly focusing on the estimation of univariate and bivariate survival function
  • Offers a guideline for analyzing truncated survival data
Citește tot Restrânge

Preț: 32578 lei

Preț vechi: 35411 lei
-8% Nou

Puncte Express: 489

Preț estimativ în valută:
6238 6495$ 5175£

Carte tipărită la comandă

Livrare economică 07-21 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128054802
ISBN-10: 0128054808
Pagini: 102
Dimensiuni: 216 x 276 x 13 mm
Greutate: 0.18 kg
Editura: ELSEVIER SCIENCE

Cuprins

Chapter 1: Introduction
Chapter 2: Survival analysis for univariate truncated data
Chapter 3: Bivariate estimation with truncated survival data
Chapter 4: Accelerated failure time model for truncated and censored survival data
Chapter 5: Recent advances for truncated survival data

Recenzii

"...an overview of recent developments in surviving analysis under truncation, especially for bivariate survival analysis...recommended to help statisticians, epidemiologists, medical researchers, and actuaries who need to understand the mechanism of selection bias." --Zentralblatt MATH