Analysis II
Autor Herbert Amann, Joachim Escheren Limba Engleză Paperback – 16 mai 2008
Preț: 488.82 lei
Preț vechi: 596.12 lei
-18% Nou
Puncte Express: 733
Preț estimativ în valută:
93.56€ • 97.51$ • 77.88£
93.56€ • 97.51$ • 77.88£
Carte disponibilă
Livrare economică 16-30 decembrie
Livrare express 29 noiembrie-05 decembrie pentru 42.88 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764374723
ISBN-10: 3764374721
Pagini: 416
Ilustrații: XII, 400 p.
Dimensiuni: 170 x 244 x 22 mm
Greutate: 0.79 kg
Ediția:2008
Editura: Springer International Publishing
Colecția Birkhäuser
Locul publicării:Cham, Switzerland
ISBN-10: 3764374721
Pagini: 416
Ilustrații: XII, 400 p.
Dimensiuni: 170 x 244 x 22 mm
Greutate: 0.79 kg
Ediția:2008
Editura: Springer International Publishing
Colecția Birkhäuser
Locul publicării:Cham, Switzerland
Public țintă
Lower undergraduateCuprins
Preface.- VI. Integral Calculus in One Variable - 1. Step Continuous Functions - 2. Continuous Extensions - 3. The Cauchy-Riemann Integral - 4. Properties of the Integral - 5. The Technology of Integration - 6. Sums and Integrals - 7. Fourier Series - 8. Improper Integrals - 9. The Gamma Function.- VII. Differential Calculus in Several Variables - 1. Continuous Linear Mappings - 2. Differentiability - 3. Calculation Rules - 4. Multilinear Mappings - 5. Higher Derivatives - 6. Nemytski Operators and Calculus of Variations - 7. Inverse Mappings - 8. Implicit Functions - 9. Manifolds - 10. Tangents and Normals.- VIII. Line Integrals - 1. Curves and Their Length - 2. Curves in Rn - 3. Pfaff Forms - 4. Line Integrals - 5. Holomorphic Functions - 6. Meromorphic Functions.- Bibliography.- Index.
Caracteristici
Cauchy’s integral theorems and the theory of holomorphic functions including the homological version of the residue theorem are derived as an application of the theory of line integrals In addition to the calculation of important definite integrals which appear in Mathematics and in Physics, theoretic properties of the Gamma function and Riemann’s Zeta function are explored Numerous examples with varying degrees of difficulty and many informative figures Includes supplementary material: sn.pub/extras