Cantitate/Preț
Produs

Analytic Number Theory: Proceedings of a Conference Held at Temple University, Philadelphia, May 12-15, 1980: Lecture Notes in Mathematics, cartea 899

Editat de Marvin I. Knopp
en Limba Engleză Paperback – dec 1981

Din seria Lecture Notes in Mathematics

Preț: 49027 lei

Nou

Puncte Express: 735

Preț estimativ în valută:
9386 9653$ 7786£

Carte tipărită la comandă

Livrare economică 20 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540111733
ISBN-10: 3540111735
Pagini: 492
Ilustrații: XII, 480 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.68 kg
Ediția:1981
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

An orthonormal system and its Lebesgue constants.- Mordell integrals and Ramanujan's “lost” notebook.- 5 Ramanujan's second notebook.- Oscillation theorems.- On the generalized density hypothesis, I.- The zeros of Hurwitz's zeta-function on ?=1/2.- Gaps between consecutive zeta zeros.- On the representation of the summatory functions of a class of arithmetical functions.- P-adic L-functions at s=0 and s=1.- Some problems and results on additive and multiplicative number theory.- Computations and generalizations on a remark of Ramanujan.- The arithmetic mean of the divisors of an integer.- The next Pellian equation.- Best Diophantine approximations for ternary linear forms, II.- Constructive elementary estimates for M(x).- On the second largest prime divisor of an odd perfect number.- A complement to Rident's P-adic generalization of the Thue-Siegel-Roth theorem.- Cyclotomy for non-squarefree modul I.- Waring's problem for sets of density zero.- Sequences without arithmetic progressions.- On polygon groups.- Theta function identities and orthogonal polynomials.- Ramanujan congruences for q(n).- Gaps in the Fourier series of automorphic forms.- Gaps in the Fourier series of automorphic forms II.- Modular functions revisited.- Bounding the norm of the Poincaré ?-operator.- Analysis on positive matrices as it might have occurred to Fourier.