Applications of Artificial Intelligence in Finance and Economics: Advances in Econometrics
Autor J.m. Binner, G. Kendall, S. H. Chenen Limba Engleză Hardback – 13 dec 2004
There are still many important Artificial Intelligence disciplines yet to be covered. Among them are the methodologies of independent component analysis, reinforcement learning, inductive logical programming, classifier systems and Bayesian networks, not to mention many ongoing and highly fascinating hybrid systems. A way to make up for their omission is to visit this subject again later. We certainly hope that we can do so in the near future with another volume of 'Applications of Artificial Intelligence in Economics and Finance'.
Din seria Advances in Econometrics
- 23% Preț: 766.64 lei
- 23% Preț: 870.06 lei
- 23% Preț: 897.36 lei
- 23% Preț: 767.51 lei
- 23% Preț: 908.75 lei
- 23% Preț: 961.85 lei
- 23% Preț: 1018.57 lei
- 23% Preț: 1040.31 lei
- 23% Preț: 1006.39 lei
- 23% Preț: 1313.89 lei
- 23% Preț: 1356.43 lei
- 23% Preț: 1285.06 lei
- 23% Preț: 1208.69 lei
- 23% Preț: 1350.60 lei
- 23% Preț: 1283.29 lei
- 19% Preț: 671.80 lei
- 23% Preț: 821.36 lei
- 19% Preț: 643.99 lei
- 23% Preț: 820.80 lei
- 23% Preț: 816.03 lei
- 23% Preț: 1169.89 lei
- 23% Preț: 900.24 lei
- 23% Preț: 849.65 lei
- 23% Preț: 802.76 lei
- 23% Preț: 956.27 lei
- 27% Preț: 977.35 lei
Preț: 891.99 lei
Preț vechi: 1158.42 lei
-23% Nou
Puncte Express: 1338
Preț estimativ în valută:
170.71€ • 177.32$ • 141.80£
170.71€ • 177.32$ • 141.80£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780762311507
ISBN-10: 0762311509
Pagini: 292
Dimensiuni: 155 x 234 x 432 mm
Greutate: 0.49 kg
Ediția:New.
Editura: Emerald Publishing
Seria Advances in Econometrics
ISBN-10: 0762311509
Pagini: 292
Dimensiuni: 155 x 234 x 432 mm
Greutate: 0.49 kg
Ediția:New.
Editura: Emerald Publishing
Seria Advances in Econometrics
Cuprins
1.Statistical analysis of genetic algorithms in discovering technical trading strategies (S.H. Chen, C.Y. Tsao).
2.A genetic programming approach to model international short-term capital flow (T. Yu, S.H. Chen, T.W. Kuo).
3.Tools for non-linear time series forecasting in economics: An empirical comparison of regime switching vector autoregressive models and recurrent neural networks (J.M. Binner, T. Elger, B. Nilsson, J.A. Tepper).
4.Using non-parametric search algorithms to forecast daily excess stock returns (N.L. Joseph, D.S. Brée, E. Kalyvas).
5.Co-evolving neural networks with evolutionary strategies: A new application to Divisia Money (J. Binner, G. Kendall, A. Gazely).
6.Forecasting the EMU inflation rate: Linear econometric versus non-linear computational models using genetic neural fuzzy systems (S. Kooths, T. Mitze, E. Ringhut).
7.Finding or not finding rules in time series (J. Lin, E. Keogh).
8.A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil (S. Mirmirani, H.C. Li).
9.Searching for Divisia/Inflation Relationships with the aggregate feed forward neural network (V.A. Schmidt, J.M. Binner).
10.Predicting housing value: Genetic algorithm attribute selection and dependence modelling utilising the gamma test (I.D. Wilson, A. J. Jones, D.H. Jenkins, J.A. Ware).
2.A genetic programming approach to model international short-term capital flow (T. Yu, S.H. Chen, T.W. Kuo).
3.Tools for non-linear time series forecasting in economics: An empirical comparison of regime switching vector autoregressive models and recurrent neural networks (J.M. Binner, T. Elger, B. Nilsson, J.A. Tepper).
4.Using non-parametric search algorithms to forecast daily excess stock returns (N.L. Joseph, D.S. Brée, E. Kalyvas).
5.Co-evolving neural networks with evolutionary strategies: A new application to Divisia Money (J. Binner, G. Kendall, A. Gazely).
6.Forecasting the EMU inflation rate: Linear econometric versus non-linear computational models using genetic neural fuzzy systems (S. Kooths, T. Mitze, E. Ringhut).
7.Finding or not finding rules in time series (J. Lin, E. Keogh).
8.A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil (S. Mirmirani, H.C. Li).
9.Searching for Divisia/Inflation Relationships with the aggregate feed forward neural network (V.A. Schmidt, J.M. Binner).
10.Predicting housing value: Genetic algorithm attribute selection and dependence modelling utilising the gamma test (I.D. Wilson, A. J. Jones, D.H. Jenkins, J.A. Ware).