Applications of Artificial Intelligence in Tunnelling and Underground Space Technology: SpringerBriefs in Applied Sciences and Technology
Autor Danial Jahed Armaghani, Aydin Azizien Limba Engleză Paperback – 14 mar 2021
Din seria SpringerBriefs in Applied Sciences and Technology
- Preț: 408.23 lei
- 17% Preț: 360.33 lei
- Preț: 369.92 lei
- Preț: 373.72 lei
- Preț: 141.23 lei
- 20% Preț: 320.82 lei
- Preț: 372.76 lei
- Preț: 195.87 lei
- 20% Preț: 293.83 lei
- Preț: 402.56 lei
- Preț: 339.16 lei
- Preț: 355.48 lei
- Preț: 260.32 lei
- Preț: 375.92 lei
- Preț: 373.72 lei
- Preț: 355.65 lei
- 20% Preț: 221.49 lei
- 20% Preț: 386.11 lei
- Preț: 371.81 lei
- Preț: 371.81 lei
- Preț: 371.26 lei
- Preț: 371.63 lei
- 20% Preț: 301.85 lei
- 15% Preț: 454.76 lei
- Preț: 141.98 lei
- Preț: 370.87 lei
- Preț: 355.92 lei
- Preț: 376.55 lei
- Preț: 371.81 lei
- Preț: 371.81 lei
- Preț: 339.16 lei
- Preț: 373.72 lei
- Preț: 373.92 lei
- Preț: 307.47 lei
- Preț: 376.55 lei
- Preț: 356.42 lei
- Preț: 370.28 lei
- Preț: 405.39 lei
- Preț: 471.64 lei
- Preț: 370.28 lei
- Preț: 273.63 lei
- 20% Preț: 319.21 lei
- Preț: 437.08 lei
- 20% Preț: 283.91 lei
- Preț: 257.48 lei
- Preț: 375.60 lei
- 20% Preț: 316.77 lei
- Preț: 410.85 lei
- Preț: 373.35 lei
- Preț: 368.04 lei
Preț: 452.82 lei
Preț vechi: 532.74 lei
-15% Nou
Puncte Express: 679
Preț estimativ în valută:
86.69€ • 89.15$ • 71.92£
86.69€ • 89.15$ • 71.92£
Carte tipărită la comandă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811610332
ISBN-10: 9811610339
Pagini: 70
Ilustrații: IX, 70 p. 16 illus., 15 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.13 kg
Ediția:1st ed. 2021
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Applied Sciences and Technology
Locul publicării:Singapore, Singapore
ISBN-10: 9811610339
Pagini: 70
Ilustrații: IX, 70 p. 16 illus., 15 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.13 kg
Ediția:1st ed. 2021
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Applied Sciences and Technology
Locul publicării:Singapore, Singapore
Cuprins
Chapter 1. An Overview of Field Classifications to Evaluate Tunnel Boring Machine Performance.- Chapter 2. Empirical, Statistical and Intelligent Techniques for TBM Performance Prediction. Chapter 3. Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem.- Chapter 4. A Comparative Study of Artificial Intelligence Techniques to Estimate TBM Performance in Various Weathering Zones.
Notă biografică
Danial Jahed Armaghani: I, currently work as a senior lecturer in the Faculty of Engineering, University of Malaya, Malaysia. I received my postdoc from Amirkabir University of Technology, Tehran, Iran and my Ph.D degree, in Civil-Geotechnics, from Universiti Teknologi Malaysia, Malaysia. My area of research is tunnelling, rock mechanics, piling technology, blasting environmental issues, applying artificial intelligence and optimization algorithms in geotechnics. I have published more than 100 papers in well-established ISI and Scopus journals, national and international conferences.
Dr. Aydin Azizi holds a PhD degree in Mechanical Engineering. Certified as an official instructor for the Siemens Mechatronic Certification Program (SMSCP), he currently serves as a Senior Lecturer at the Oxford Brookes University. His current research focuses on investigating and developing novel techniques to model, control and optimize complex systems. Dr. Azizi’s areas of expertise include Control & Automation, Artificial Intelligence and Simulation Techniques. Dr. Azizi is the recipient of the National Research Award of Oman for his AI-focused research, DELL EMC’s “Envision the Future” completion award in IoT for “Automated Irrigation System”, and ‘Exceptional Talent’ recognition by the British Royal Academy of Engineering.
Caracteristici
Presents statistical and intelligent computational techniques to calculate the performance of tunnel boring machine (TBM) Includes a review of available TBM performance predictive models in detail Introduces predictive models that are powerful and easy to implement, in estimating TBM performance parameters