Approximate Solution of Operator Equations
Autor M.A. Krasnosel'skii, G.M. Vainikko, R.P. Zabreyko, Ya.B. Ruticki, V.Va. Stet'senkoen Limba Engleză Paperback – 10 noi 2011
Preț: 387.19 lei
Nou
Puncte Express: 581
Preț estimativ în valută:
74.10€ • 77.70$ • 61.79£
74.10€ • 77.70$ • 61.79£
Carte tipărită la comandă
Livrare economică 08-22 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401027175
ISBN-10: 940102717X
Pagini: 500
Ilustrații: 496 p.
Dimensiuni: 152 x 229 x 26 mm
Greutate: 0.66 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
ISBN-10: 940102717X
Pagini: 500
Ilustrații: 496 p.
Dimensiuni: 152 x 229 x 26 mm
Greutate: 0.66 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Successive approximations.- §1. Existence of the fixed point of a contraction operator.- §2. Convergence of successive approximations.- §3. Equations with monotone operators.- §4. Equations with nonexpansive operators.- 2 Linear equations.- §5. Bounds for the spectral radius of a linear operator.- §6. The block method for estimating the spectral radius..- §7. Transformation of linear equations.- §8. Method of minimal residuals.- §9. Approximate computation of the spectral radius.- §10. Monotone iterative processes.- 3 Equations with smooth operators.- §11. The Newton-Kantorovich method.- §12. Modified Newton-Kantorovich method.- §13. Approximate solution of linearized equations.- §14. A posteriori error estimates.- 4 Projection methods.- § 15. General theorems on convergence of projection methods..- § 16. The Bubnov-Galerkin and Galerkin-Petrov methods.- §17. The Galerkin method with perturbations and the general theory of approximate methods.- §18. Projection methods in the eigenvalue problem.- §19. Projection methods for solution of nonlinear equations.- 5 Small solutions of operator equations.- §20. Approximation of implicit functions.- §21. Finite systems of equations.- §22. Branching of solutions of operator equations.- § 23. Simple solutions and the method of undetermined coefficients.- §24. The problem of bifurcation points.