Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws
Autor Philipp Öffneren Limba Engleză Paperback – 17 aug 2023
Preț: 524.88 lei
Preț vechi: 617.52 lei
-15% Nou
Puncte Express: 787
Preț estimativ în valută:
100.48€ • 103.34$ • 83.36£
100.48€ • 103.34$ • 83.36£
Carte tipărită la comandă
Livrare economică 15 februarie-01 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783658426194
ISBN-10: 3658426195
Pagini: 486
Ilustrații: XV, 486 p. 94 illus., 81 illus. in color. Textbook for German language market.
Dimensiuni: 148 x 210 mm
Greutate: 0.59 kg
Ediția:1st ed. 2023
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Spektrum
Locul publicării:Wiesbaden, Germany
ISBN-10: 3658426195
Pagini: 486
Ilustrații: XV, 486 p. 94 illus., 81 illus. in color. Textbook for German language market.
Dimensiuni: 148 x 210 mm
Greutate: 0.59 kg
Ediția:1st ed. 2023
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Spektrum
Locul publicării:Wiesbaden, Germany
Cuprins
Introduction.- Foundations of Hyperbolic Problems and Numerical Methods.- Recent Progresses.- Attachments.
Notă biografică
About the author
Philipp Öffner is a research associate in the numerical mathematics group at Johannes Gutenberg University Mainz. In his research he focuses on numerical methods for partial differential equations and on scientific computing.
Textul de pe ultima copertă
The book focuses on stability and approximation results concerning recent numerical methods for the numerical solution of hyperbolic conservation laws. The work begins with a detailed and thorough introduction of hyperbolic conservation/balance laws and their numerical treatment. In the main part, recent results in such context are presented focusing on the investigation of approximation properties of discontinuous Galerkin and flux reconstruction methods, the construction of (entropy) stable numerical methods and the extension of existing (entropy) stability results for both semidiscrete and fully discrete schemes, and development of new high-order methods.
About the author
Philipp Öffner is a research associate in the numerical mathematics group at Johannes Gutenberg University Mainz. In his research he focuses on numerical methods for partial differential equations and on scientific computing.