Cantitate/Preț
Produs

Arithmetical Investigations: Representation Theory, Orthogonal Polynomials, and Quantum Interpolations: Lecture Notes in Mathematics, cartea 1941

Autor Shai M. J. Haran
en Limba Engleză Paperback – 2 mai 2008
In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 34718 lei

Nou

Puncte Express: 521

Preț estimativ în valută:
6644 6989$ 5515£

Carte tipărită la comandă

Livrare economică 15-29 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540783787
ISBN-10: 3540783784
Pagini: 236
Ilustrații: XII, 222 p. 23 illus.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.41 kg
Ediția:2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Introduction: Motivations from Geometry.- Gamma and Beta Measures.- Markov Chains.- Real Beta Chain and q-Interpolation.- Ladder Structure.- q-Interpolation of Local Tate Thesis.- Pure Basis and Semi-Group.- Higher Dimensional Theory.- Real Grassmann Manifold.- p-Adic Grassmann Manifold.- q-Grassmann Manifold.- Quantum Group Uq(su(1, 1)) and the q-Hahn Basis.

Textul de pe ultima copertă

In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.

Caracteristici

Includes supplementary material: sn.pub/extras