Articulatory Speech Synthesis from the Fluid Dynamics of the Vocal Apparatus: Synthesis Lectures on Speech and Audio Processing
Autor Stephen Levinson, Don Davis, Scott Slimon, Jun Huangen Limba Engleză Paperback – 20 iul 2012
Preț: 256.20 lei
Nou
Puncte Express: 384
Preț estimativ în valută:
49.03€ • 50.93$ • 40.73£
49.03€ • 50.93$ • 40.73£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031014352
ISBN-10: 3031014359
Ilustrații: XII, 104 p.
Dimensiuni: 191 x 235 mm
Greutate: 0.22 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Speech and Audio Processing
Locul publicării:Cham, Switzerland
ISBN-10: 3031014359
Ilustrații: XII, 104 p.
Dimensiuni: 191 x 235 mm
Greutate: 0.22 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Speech and Audio Processing
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Literature Review.- Estimation of Dynamic Articulatory Parameters.- Construction of Articulatory Model Based on MRI Data.- Vocal Fold Excitation Models.- Experimental Results of Articulatory Synthesis.- Conclusion.
Notă biografică
Stephen E. Levinson received his Ph.D. in Electrical Engineering from the University of Rhode Island, Kingston, Rhode Island in 1974. From 1966 - 1969 he was a design engineer at Electric Boat Division of General Dynamics in Groton, Connecticut. From 1974-1976 he held a J. Willard Gibbs Instructorship in Computer Science at Yale University. In 1976, he joined the technical staff of Bell Laboratories in Murray Hill, NJ where he conducted research in the areas of speech recognition and understanding. In 1979, he was a visiting researcher at the NTT Musashino Electrical Communication Laboratory in Tokyo, Japan. He held a visiting fellowship in the Engineering Department at Cambridge University in 1984, and in 1990 he became head of the Linguistics Research Department at AT&T Bell Laboratories where he directed research in Speech Synthesis, Speech Recognition, and Spoken Language Translation. He joined the Department of Electrical and Computer Engineering of the University of Illinois at Urbana-Champaign in 1997, where he teaches courses in Speech and Language Processing and leads research projects in speech synthesis and automatic language acquisition. He is also a full-time faculty member of the Beckman Institute for Advanced Science and Technology where he serves as the head of the Artificial Intelligence group. Dr. Levinson is a member of the Association for Computing Machinery, a fellow of the Institute of Electrical and Electronic Engineers, and a fellow of the Acoustical Society of America. He is a founding editor of the journal Computer Speech and Language and a former member and chair of the Industrial Advisory Board of the CAIP Center at Rutgers University. He is the author of more than 100 technical papers and holds 7 patents. His book, published in 2005 by John Wiley and Sons, Ltd., is entitled Mathematical Models for Speech Technology.Donald W. Davis, Jr. received B. S., M. S., and Ph. D. degrees in Aeronautical Engineering from Purdue University in 1970, 1975, and 1981, respectively. Currently, he is a Staff Engineer at Electric Boat Corporation where he works in the area of computational fluid dynamics (CFD). His research interests include fluid mechanics, heat transfer, computational methods, and turbulence modeling. He is also involved in applying advanced CFD tools to large, complex, industrially relevant turbulent flow problems.
Scot A. Slimon received a B.S. in Marine Engineering Systems from the United States Merchant Marine Academy, an M.S. in Mechanical Engineering from the Rensselaer Polytechnic Institute, and a Ph.D. in Mechanical Engineering from the University of Connecticut. Currently, he is a Principal Engineer at Electric Boat Corporation, where he is responsible for the development and application of a computational fluid dynamics solver. His current research involves preconditioning techniques, multiphase flow, hybrid turbulence modeling, and flow induced sound at low Mach numbers. He has applied this research to a number of large-scale external and internal flow problems supporting major Navy submarine platforms
Scot A. Slimon received a B.S. in Marine Engineering Systems from the United States Merchant Marine Academy, an M.S. in Mechanical Engineering from the Rensselaer Polytechnic Institute, and a Ph.D. in Mechanical Engineering from the University of Connecticut. Currently, he is a Principal Engineer at Electric Boat Corporation, where he is responsible for the development and application of a computational fluid dynamics solver. His current research involves preconditioning techniques, multiphase flow, hybrid turbulence modeling, and flow induced sound at low Mach numbers. He has applied this research to a number of large-scale external and internal flow problems supporting major Navy submarine platforms