Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines
Editat de Jihad Badra, Pinaki Pal, Yuanjiang Pei, Sibendu Somen Limba Engleză Paperback – 28 ian 2022
- Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems
- Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments
- Discusses data driven optimization techniques for fuel formulations and vehicle control calibration
Preț: 896.48 lei
Preț vechi: 1177.64 lei
-24% Nou
Puncte Express: 1345
Preț estimativ în valută:
171.60€ • 186.45$ • 144.23£
171.60€ • 186.45$ • 144.23£
Carte tipărită la comandă
Livrare economică 14-28 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780323884570
ISBN-10: 0323884571
Pagini: 260
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 152 x 229 mm
Greutate: 0.35 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0323884571
Pagini: 260
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 152 x 229 mm
Greutate: 0.35 kg
Editura: ELSEVIER SCIENCE
Public țintă
Automotive & Mechanical Engineers in industry and academia. OEMs and those in IC Engine R&D.Cuprins
1. Active-learning for fuel optimization
2. High throughput screening for fuel formulation
3. Engine optimization using computational fluid dynamics-Genetic algorithms (CFD-GA)
4. Engine optimization using computational fluid dynamics-design of experiments (CFD-DoE)
5. Engine optimization using machine learning-genetic algorithms (ML-GA)
6. Machine learning driven sequential optimization using dynamic exploration and exploitation
7. Optimization of after-treatment systems using machine learning
8. Engine cycle-to-cycle variation control
9. Prediction of low pressure preignition using machine learning
10. AI aided optimization of experimental engine calibration
11. AI aided optimization of vehicle control calibration
2. High throughput screening for fuel formulation
3. Engine optimization using computational fluid dynamics-Genetic algorithms (CFD-GA)
4. Engine optimization using computational fluid dynamics-design of experiments (CFD-DoE)
5. Engine optimization using machine learning-genetic algorithms (ML-GA)
6. Machine learning driven sequential optimization using dynamic exploration and exploitation
7. Optimization of after-treatment systems using machine learning
8. Engine cycle-to-cycle variation control
9. Prediction of low pressure preignition using machine learning
10. AI aided optimization of experimental engine calibration
11. AI aided optimization of vehicle control calibration