Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines
Editat de Jihad Badra, Pinaki Pal, Yuanjiang Pei, Sibendu Somen Limba Engleză Paperback – 27 ian 2022
- Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems
- Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments
- Discusses data driven optimization techniques for fuel formulations and vehicle control calibration
Preț: 1060.73 lei
Preț vechi: 1453.05 lei
-27% Nou
Puncte Express: 1591
Preț estimativ în valută:
203.02€ • 211.60$ • 169.01£
203.02€ • 211.60$ • 169.01£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780323884570
ISBN-10: 0323884571
Pagini: 260
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 152 x 229 mm
Greutate: 0.35 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0323884571
Pagini: 260
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 152 x 229 mm
Greutate: 0.35 kg
Editura: ELSEVIER SCIENCE
Public țintă
Automotive & Mechanical Engineers in industry and academia. OEMs and those in IC Engine R&D.Cuprins
1. Active-learning for fuel optimization 2. High throughput screening for fuel formulation 3. Engine optimization using computational fluid dynamics-Genetic algorithms (CFD-GA) 4. Engine optimization using computational fluid dynamics-design of experiments (CFD-DoE) 5. Engine optimization using machine learning-genetic algorithms (ML-GA) 6. Machine learning driven sequential optimization using dynamic exploration and exploitation 7. Optimization of after-treatment systems using machine learning 8. Engine cycle-to-cycle variation control 9. Prediction of low pressure preignition using machine learning 10. AI aided optimization of experimental engine calibration 11. AI aided optimization of vehicle control calibration