Cantitate/Preț
Produs

Artificial Intelligence for Computational Modeling of the Heart

Editat de Tommaso Mansi, Tiziano Passerini, Dorin Comaniciu
en Limba Engleză Paperback – 28 noi 2019
Artificial Intelligence for Computational Modeling of the Heart presents recent research developments towards streamlined and automatic estimation of the digital twin of a patient’s heart by combining computational modeling of heart physiology and artificial intelligence. The book first introduces the major aspects of multi-scale modeling of the heart, along with the compromises needed to achieve subject-specific simulations. Reader will then learn how AI technologies can unlock robust estimations of cardiac anatomy, obtain meta-models for real-time biophysical computations, and estimate model parameters from routine clinical data. Concepts are all illustrated through concrete clinical applications.


  • Presents recent advances in computational modeling of heart function and artificial intelligence technologies for subject-specific applications
  • Discusses AI-based technologies for robust anatomical modeling from medical images, data-driven reduction of multi-scale cardiac models, and estimations of physiological parameters from clinical data
  • Illustrates the technology through concrete clinical applications and discusses potential impacts and next steps needed for clinical translation
Citește tot Restrânge

Preț: 71778 lei

Preț vechi: 93955 lei
-24% Nou

Puncte Express: 1077

Preț estimativ în valută:
13736 14359$ 11607£

Carte tipărită la comandă

Livrare economică 27 februarie-13 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128175941
ISBN-10: 012817594X
Pagini: 274
Dimensiuni: 191 x 235 x 18 mm
Greutate: 0.48 kg
Editura: ELSEVIER SCIENCE

Cuprins

1. Introduction
2. Multi-scale Models of the Heart for Individualized Simulations
3. Learning Cardiac Anatomy: from Images to Heart Avatar
4. Data-Driven Reduction of Cardiac Models
5. Machine Learning Methods for Robust Parameter Estimation
6. Clinical Applications
7. Conclusion and Perspective