Artificial Intelligence for Subsurface Characterization and Monitoring
Editat de Aria Abubakaren Limba Engleză Paperback – 2025
- Focuses on deep learning applications for geoscience provides a one-stop reference for deep learning applications for geoscience
- Provides comprehensive examples for state-of-art techniques throughout the subsurface characterization workflow
- Presented applications come with realistic field dataset examples so that readers can learn what to expect in real-life
Preț: 750.13 lei
Preț vechi: 989.69 lei
-24% Nou
Puncte Express: 1125
Preț estimativ în valută:
143.57€ • 151.45$ • 119.64£
143.57€ • 151.45$ • 119.64£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443235177
ISBN-10: 0443235171
Pagini: 288
Dimensiuni: 152 x 229 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0443235171
Pagini: 288
Dimensiuni: 152 x 229 mm
Editura: ELSEVIER SCIENCE
Cuprins
Part I: Deep Learning for Data Enrichment
1. Rejuvenating legacy data by digitizing raster logs
2. Information extraction from unstructured well reports
Part II: Deep learning Applied to Well Log Data
3. Well log data QC and processing: correction, outlier detection, and reconstruction
4. Automatic well marker picking
5. Automatic log interpretation
Part III: Deep learning Applied to Seismic Data
6. Intelligent processing for clearer seismic images
7. Seismic interpretation with improved quality and efficiency
Part IV: Deep learning for Data Integration
8. Automatic seismic-well tie
9. Rock property inversion and validation
Part V: Deep learning in Time Lapse Scenarios
10. Sparse data reconstruction for reducing the cost of 4D seismic data
11. Time-lapse seismic data repeatability enforcement
12. Direct property prediction from pre-migration seismic data
1. Rejuvenating legacy data by digitizing raster logs
2. Information extraction from unstructured well reports
Part II: Deep learning Applied to Well Log Data
3. Well log data QC and processing: correction, outlier detection, and reconstruction
4. Automatic well marker picking
5. Automatic log interpretation
Part III: Deep learning Applied to Seismic Data
6. Intelligent processing for clearer seismic images
7. Seismic interpretation with improved quality and efficiency
Part IV: Deep learning for Data Integration
8. Automatic seismic-well tie
9. Rock property inversion and validation
Part V: Deep learning in Time Lapse Scenarios
10. Sparse data reconstruction for reducing the cost of 4D seismic data
11. Time-lapse seismic data repeatability enforcement
12. Direct property prediction from pre-migration seismic data