Asymptotic Modeling of Atmospheric Flows
Autor Radyadour Kh Zeytounian Traducere de Lesly Bryen Limba Engleză Paperback – 16 dec 2011
Preț: 659.73 lei
Preț vechi: 776.15 lei
-15% Nou
Puncte Express: 990
Preț estimativ în valută:
126.29€ • 137.58$ • 105.95£
126.29€ • 137.58$ • 105.95£
Carte tipărită la comandă
Livrare economică 18 decembrie 24 - 01 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642738029
ISBN-10: 3642738028
Pagini: 412
Ilustrații: XII, 396 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642738028
Pagini: 412
Ilustrații: XII, 396 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 2. The Equations.- 2.1 The Euler Equations.- 2.2 The Tangent Plane Approximation.- 2.3 The So-called ß-Plane Approximation.- 2.4 Different Forms of the Euler Equations.- 2.5 The Non-dimensional Non-adiabatic Equations.- 3. Internal Waves and Filtering.- 3.1 The Case of $$d{\bar T_\infty }/d{\bar z_\infty } \equiv 0$$. The Wave Equation.- 3.2 The Vertical Structure of the Internal Waves.- 3.3 Filtering.- 3.4 Conclusions and Bibliographical References.- 4. Rossby Waves.- 4.1 An Evolution Equation for Rossby Waves.- 4.2 Rossby Waves in Linear Theory.- 4.3 Rossby Waves in a So-called Barotropic Atmosphere.- 4.4 On the Problem of Hydrodynamic Instability.- 4.5 Conclusions and Bibliographical References.- 5. A Presentation of Asymptotic Methods.- 5.1 The Matched Asymptotic Expansions Method.- 5.2 The Multiple-Scale Method.- 6. Some Applications of the MMAE and MSM.- 6.1 Application of the MMAE to Adiabatic Flows with Small Kibel Numbers.- 6.2 Double-Scale Structure of the Boussinesq Waves: Linear Theory.- 6.3 Various Hydrostatic Limiting Processes.- 6.4 A Triple-Deck Structure Related Local Model.- 7. The Quasi-static Approximation.- 7.1 The Exact Quasi-static Equations.- 7.2 Asymptotic Analysis of the Primitive Equations.- 7.3 The Boundary Layer Phenomenon and the Primitive Equations.- 7.4 Simplified Primitive Equations.- 7.5 The Hydrostatic Balance Adjustment Problem (in an Adiabatic Atmosphere).- 7.6 Complementary Remarks 1.- 7.7 Complementary Remarks 2.- 8. The Boussinesq Approximation.- 8.1 The Boussinesq Equations.- 8.2 Some Considerations concerning the Singular Nature of the Boussinesq Approximation.- 8.3 Three New Forms of the Boussinesq Equations.- 8.4 Concerning a Linear Theory of the Boussinesq Waves $$\left( {{\rm{Ro}}\not \equiv \infty }\right)$$.- 8.5 The Problem of Adjustment to the Boussinesq State.- 8.6 Complementary Remarks.- 9. The Isochoric Approximation.- 9.1 The Isochoric Equations.- 9.2 Some Considerations concerning the Singular Nature of the Isochoric Approximation.- 9.3 The Relation Between the Isochoric and Boussinesq Approximations.- 9.4 Wave Phenomena in the Isochoric Flows.- 9.5 Complementary Remarks.- 10. The Deep Convection Approximation.- 10.1 The “Anelastic” Equations of Ogura and Phillips.- 10.2 The Deep Convection Equations According to Zeytounian.- 10.3 The Relation Between the Boussinesq and the Deep Convection Approximations.- 10.4 Complementary Remarks.- 11. The Quasi-geostrophic and Ageostrophic Models.- 11.1 The Classical Quasi-geostrophic Model.- 11.2 The Adjustment to Geostrophy.- 11.3 The Ekman Steady Boundary Layer and the Ackerblom Problem.- 11.4 The So-called “Ageostrophic” Model.- 11.5 Complementary Remarks.- 12. Models Derived from the Theory of Low Mach Number Flows.- 12.1 The So-called Classical “Quasi-nondivergent” Model and Its Limitations.- 12.2 The Generalized Quasi-nondivergent Model and Its Limitations.- 12.3 Analysis of Guiraud and Zeytounian’s Recent Results.- 12.4 The Problem of Adjustment to the Quasi-nondivergent Flow.- 12.5 Complementary Remarks.- 13. The Models for the Local and Regional Scale Atmospheric Flows.- 13.1 The Free Circulation Models.- 13.2 The Models for the Asymptotic Analysis of Lee Waves.- 13.3 Modeling of the Interaction Phenomenon Between Free and Forced Circulations.- 13.4 Complementary Remarks.- Appendix. The Hydrostatic Forecasting Equations for Large-Synoptic-Scale Atmospheric Processes.- A.1 The Governing Equations.- A.2 The Hydrostatic Model Equations.- A.3 The Large-Scale, Synoptic, Boundary Layer Equations.-References.