Cantitate/Preț
Produs

Banach Spaces of Analytic Functions.: Proceedings of the Pelzczynski Conference Held at Kent State University, July 12-16, 1976.: Lecture Notes in Mathematics, cartea 604

Editat de J. Baker Contribuţii de G. Bennett Editat de C. Cleaver Contribuţii de S.Y. Chang Editat de J. Diestel Contribuţii de D.E. Marshall, J.A. Cima, W. Davis, W.J. Davis, W.B. Johnson, J.B. Garnett, J. Johnson, J. Wolfe, H.E. Lacey, D.R. Lewis, A.L. Matheson, P. Orno, J.W. Roberts, R. Rochberg, B. Russo, S. Scheinberg, J.H. Shapiro, M.A. Smith, F. Sullivan, C. Stegall
en Limba Engleză Paperback – aug 1977

Din seria Lecture Notes in Mathematics

Preț: 26922 lei

Nou

Puncte Express: 404

Preț estimativ în valută:
5152 5352$ 4280£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540083566
ISBN-10: 3540083561
Pagini: 148
Ilustrații: VII, 144 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

An extension of the Riesz-Thorin theorem.- Some algebras of bounded analytic functions containing the disk algebra.- A theorem on composition operators.- The distance of symmetric spaces from ? p (n) .- Weakly convergent sequences of Banach space valued random variables.- Two remarks on interpolation by bounded analytic functions.- Norm attaining operators on C(S) spaces.- Local unconditional structure in Banach spaces.- Duals of tensor products.- Closed ideals in rings of analytic functions satisfying a Lipschitz condition.- A separable reflexive Banach space having no finite dimensional ?ebyšev subspaces.- A nonlocally convex F-space with the Hahn-Banach approximation property.- The Banach-Mazur distance between function algebras on degenerating Riemann surfaces.- Operator theory in harmonic analysis.- Cluster sets and corona theorems.- Remarks on F-spaces of analytic functions.- Extremely smooth Banach spaces.- A proof of the martingale convergence theorem in Banach spaces.