Banach Spaces: North-Holland Mathematical Library, cartea 1
Corneliu Constantinescuen Limba Engleză Hardback – 29 apr 2001
Din seria North-Holland Mathematical Library
- 15% Preț: 333.38 lei
- 30% Preț: 343.32 lei
- 23% Preț: 638.56 lei
- 27% Preț: 1461.81 lei
- 15% Preț: 329.76 lei
- 15% Preț: 331.30 lei
- 23% Preț: 637.56 lei
- 27% Preț: 718.06 lei
- 27% Preț: 604.67 lei
- 27% Preț: 969.73 lei
- 23% Preț: 638.56 lei
- 27% Preț: 1183.12 lei
- 27% Preț: 924.44 lei
- 27% Preț: 977.70 lei
- 27% Preț: 728.24 lei
- 27% Preț: 727.81 lei
- 27% Preț: 903.71 lei
- Preț: 459.92 lei
- 27% Preț: 969.36 lei
- 27% Preț: 811.66 lei
- 27% Preț: 1383.42 lei
- 27% Preț: 837.86 lei
- 27% Preț: 1166.85 lei
- 32% Preț: 329.68 lei
Preț: 567.19 lei
Preț vechi: 736.61 lei
-23% Nou
Puncte Express: 851
Preț estimativ în valută:
108.58€ • 113.03$ • 89.39£
108.58€ • 113.03$ • 89.39£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780444507495
ISBN-10: 0444507493
Pagini: 400
Dimensiuni: 156 x 234 x 22 mm
Greutate: 0.74 kg
Editura: ELSEVIER SCIENCE
Seria North-Holland Mathematical Library
ISBN-10: 0444507493
Pagini: 400
Dimensiuni: 156 x 234 x 22 mm
Greutate: 0.74 kg
Editura: ELSEVIER SCIENCE
Seria North-Holland Mathematical Library
Cuprins
Introduction.
Some Notation and Terminology.
1. Banach Spaces.
1.1 Normed Spaces.
1.1.1 General Results.
1.1.2 Some Standard Examples.
1.1.3 Minkowski's Theorem.
1.1.4 Locally Compact Normed Spaces.
1.1.5 Products of Normed Spaces.
1.1.6 Summable Families.
Exercises.
1.2 Operators.
1.2.1 General Results.
1.2.2 Standard Examples.
1.2.3 Infinite Matrices.
1.2.4 Quotient Spaces.
1.2.5 Complemented Subspaces.
1.2.6 The Topology of Pointwise Convergence.
1.2.7 Convex Sets.
1.2.8 The Alaoglu-Bourbaki Theorem.
1.2.9 Bilinear Maps.
Exercises.
1.3 The Hahn-Banach Theorem.
1.3.1 The Banach Theorem.
1.3.2 Examples in Measure Theory.
1.3.3 The Hahn-Banach Theorem.
1.3.4 The Transpose of an Operator.
1.3.5 Polar Sets.
1.3.6 The Bidual.
1.3.7 The Krein-Šmulian Theorem.
1.3.8 Reflexive Spaces.
1.3.9 Completion of Normed Spaces.
1.3.10 Analytic Functions.
Exercises.
1.4 Applications of Baire's Theorem.
1.4.1 The Banach-Steinhaus Theorem.
1.4.2 Open Mapping Principle.
Exercises.
1.5 Banach Categories.
1.5.1 Definitions.
1.5.2 Functors.
1.6 Nuclear Maps.
1.6.1 General Results.
1.6.2 Examples.
1.7 Ordered Banach Spaces.
1.7.1 Ordered Normed Spaces.
1.7.2 Order Continuity.
Name Index. Subject Index. Symbol Index.
Some Notation and Terminology.
1. Banach Spaces.
1.1 Normed Spaces.
1.1.1 General Results.
1.1.2 Some Standard Examples.
1.1.3 Minkowski's Theorem.
1.1.4 Locally Compact Normed Spaces.
1.1.5 Products of Normed Spaces.
1.1.6 Summable Families.
Exercises.
1.2 Operators.
1.2.1 General Results.
1.2.2 Standard Examples.
1.2.3 Infinite Matrices.
1.2.4 Quotient Spaces.
1.2.5 Complemented Subspaces.
1.2.6 The Topology of Pointwise Convergence.
1.2.7 Convex Sets.
1.2.8 The Alaoglu-Bourbaki Theorem.
1.2.9 Bilinear Maps.
Exercises.
1.3 The Hahn-Banach Theorem.
1.3.1 The Banach Theorem.
1.3.2 Examples in Measure Theory.
1.3.3 The Hahn-Banach Theorem.
1.3.4 The Transpose of an Operator.
1.3.5 Polar Sets.
1.3.6 The Bidual.
1.3.7 The Krein-Šmulian Theorem.
1.3.8 Reflexive Spaces.
1.3.9 Completion of Normed Spaces.
1.3.10 Analytic Functions.
Exercises.
1.4 Applications of Baire's Theorem.
1.4.1 The Banach-Steinhaus Theorem.
1.4.2 Open Mapping Principle.
Exercises.
1.5 Banach Categories.
1.5.1 Definitions.
1.5.2 Functors.
1.6 Nuclear Maps.
1.6.1 General Results.
1.6.2 Examples.
1.7 Ordered Banach Spaces.
1.7.1 Ordered Normed Spaces.
1.7.2 Order Continuity.
Name Index. Subject Index. Symbol Index.