Basic Multivariable Calculus
Autor Jerrold E. Marsden, Anthony Tromba, Alan Weinsteinen Limba Engleză Hardback – 30 oct 2000
Preț: 520.08 lei
Nou
Puncte Express: 780
Preț estimativ în valută:
99.53€ • 103.28$ • 83.19£
99.53€ • 103.28$ • 83.19£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387979762
ISBN-10: 038797976X
Pagini: 540
Ilustrații: XVI, 540 p.
Dimensiuni: 178 x 254 x 30 mm
Greutate: 1.18 kg
Ediția:1st ed. 1993. Corr. 3rd printing 2000
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 038797976X
Pagini: 540
Ilustrații: XVI, 540 p.
Dimensiuni: 178 x 254 x 30 mm
Greutate: 1.18 kg
Ediția:1st ed. 1993. Corr. 3rd printing 2000
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateDescriere
Basic Multivariable Calculus fills the need for a student-oriented text devoted exclusively to the third-semester course in multivariable calculus.In this text, the basic algebraic, analytic, and geometric concepts of multivariable and vector calculus are carefully explained, with an emphasis on developing the student's intuitive understanding and computational technique. A wealth of figures supports geometrical interpretation, while exercise sets, review sections, practice exams, and historical notes keep the students active in, and involved with, the mathematical ideas. All necessary linear algebra is developed within the text, and the material can be readily coordinated with computer laboratories.Basic Multivariable Calculus is the product of an extensive writing, revising, and class-testing collaboration by the authors of Calculus III (Springer-Verlag) and Vector Calculus (W.H. Freeman & Co.). Incorporating many features from these highly respected texts, it is both a synthesis of the authors' previous work and a new and original textbook.
Cuprins
* Algebra and geometry of euclidean space * Differentiation * Higher derivatives and extrema * Vector-valued functions * Multiple integrals * Integrals over curves and surfaces * The integral theorems of vector analysis