Bayesian Filtering and Smoothing: Institute of Mathematical Statistics Textbooks, cartea 17
Autor Simo Särkkä, Lennart Svenssonen Limba Engleză Paperback – 14 iun 2023
Preț: 275.09 lei
Nou
Puncte Express: 413
Preț estimativ în valută:
52.65€ • 54.31$ • 44.56£
52.65€ • 54.31$ • 44.56£
Carte disponibilă
Livrare economică 12-26 februarie
Livrare express 28 ianuarie-01 februarie pentru 37.56 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781108926645
ISBN-10: 1108926649
Pagini: 430
Dimensiuni: 230 x 152 x 25 mm
Greutate: 0.58 kg
Ediția:2Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Institute of Mathematical Statistics Textbooks
Locul publicării:New York, United States
ISBN-10: 1108926649
Pagini: 430
Dimensiuni: 230 x 152 x 25 mm
Greutate: 0.58 kg
Ediția:2Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Institute of Mathematical Statistics Textbooks
Locul publicării:New York, United States
Cuprins
Symbols and abbreviations; 1. What are Bayesian filtering and smoothing?; 2. Bayesian inference; 3. Batch and recursive Bayesian estimation; 4. Discretization of continuous-time dynamic models; 5. Modeling with state space models; 6. Bayesian filtering equations and exact solutions; 7. Extended Kalman filtering; 8. General Gaussian filtering; 9. Gaussian filtering by enabling approximations; 10. Posterior linearization filtering; 11. Particle filtering; 12. Bayesian smoothing equations and exact solutions; 13. Extended Rauch-Tung-Striebel smoothing; 14. General Gaussian smoothing; 15. Particle smoothing; 16. Parameter estimation; 17. Epilogue; Appendix. Additional material; References; Index.
Recenzii
'The book represents an excellent treatise of non-linear filtering from a Bayesian perspective. It has a nice balance between details and breadth, and it provides a nice journey from the basics of Bayesian inference to sophisticated filtering methods.' Petar M. Djurić, Stony Brook
'An excellent and pedagogical treatment of the complex world of nonlinear filtering. It is very valuable for both researchers and practitioners.' Lennart Ljung, Linköping University
'An excellent and pedagogical treatment of the complex world of nonlinear filtering. It is very valuable for both researchers and practitioners.' Lennart Ljung, Linköping University
Notă biografică
Descriere
A Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.