Bayesian Inference: Parameter Estimation and Decisions: Advanced Texts in Physics
Autor Hanns L. Harneyen Limba Engleză Paperback – 15 dec 2010
Din seria Advanced Texts in Physics
- 15% Preț: 590.30 lei
- Preț: 480.01 lei
- Preț: 202.50 lei
- 15% Preț: 475.62 lei
- 15% Preț: 710.75 lei
- 15% Preț: 468.57 lei
- Preț: 393.35 lei
- 15% Preț: 571.96 lei
- Preț: 395.47 lei
- Preț: 403.75 lei
- 15% Preț: 542.04 lei
- 18% Preț: 792.96 lei
- 15% Preț: 658.70 lei
- 18% Preț: 729.68 lei
- 18% Preț: 975.10 lei
- Preț: 412.78 lei
- 15% Preț: 713.69 lei
- 15% Preț: 588.50 lei
- Preț: 402.76 lei
- 18% Preț: 739.81 lei
- 15% Preț: 651.84 lei
- 15% Preț: 646.11 lei
- 15% Preț: 653.14 lei
- 23% Preț: 676.66 lei
- Preț: 413.15 lei
- 18% Preț: 730.79 lei
- 15% Preț: 644.30 lei
- 15% Preț: 543.34 lei
- 15% Preț: 652.17 lei
- Preț: 388.52 lei
- 15% Preț: 605.20 lei
- 18% Preț: 798.50 lei
- 18% Preț: 1852.57 lei
- 18% Preț: 947.85 lei
- 18% Preț: 969.44 lei
Preț: 720.53 lei
Preț vechi: 878.69 lei
-18% Nou
Puncte Express: 1081
Preț estimativ în valută:
137.89€ • 142.26$ • 116.70£
137.89€ • 142.26$ • 116.70£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642055775
ISBN-10: 364205577X
Pagini: 280
Ilustrații: XIII, 263 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of hardcover 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Advanced Texts in Physics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 364205577X
Pagini: 280
Ilustrații: XIII, 263 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of hardcover 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Advanced Texts in Physics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
1 Knowledge and Logic.- 2 Bayes’ Theorem.- 3 Probable and Improbable Data.- 4 Description of Distributions I: Real x.- 5 Description of Distributions II: Natural x.- 6 Form Invariance I: Real x.- 7 Examples of Invariant Measures.- 8 A Linear Representation of Form Invariance.- 9 Beyond Form Invariance: The Geometric Prior.- 10 Inferring the Mean or Standard Deviation.- 11 Form Invariance II: Natural x.- 12 Independence of Parameters.- 13 The Art of Fitting I: Real x.- 14 Judging a Fit I: Real x.- 15 The Art of Fitting II: Natural x.- 16 Judging a Fit II: Natural x.- 17 Summary.- A Problems and Solutions.- A.1 Knowledge and Logic.- A.2 Bayes’ Theorem.- A.3 Probable and Improbable Data.- A.7 Examples of Invariant Measures.- A.8 A Linear Representation of Form Invariance.- A.9 Beyond Form Invariance: The Geometric Prior.- A.10 Inferring the Mean or Standard Deviation.- A.12 Independence of Parameters.- B.1 The Correlation Matrix.- B.2 Calculation of a Jacobian.- B.4 The Beta Function.- C.1 The Multinomial Theorem.- D Form Invariance I: Probability Densities.- D.1 The Invariant Measure of a Group.- E Beyond Form Invariance: The Geometric Prior.- E.1 The Definition of the Fisher Matrix.- E.2 Evaluation of a Determinant.- E.3 Evaluation of a Fisher Matrix.- E.4 The Fisher Matrix of the Multinomial Model.- F Inferring the Mean or Standard Deviation.- G.1 Destruction and Creation Operators.- G.2 Unitary Operators.- G.3 The Probability Amplitude of the Histogram.- G.4 Form Invariance of the Histogram.- G.5 Quasi-Events in the Histogram.- G.6 Form Invariance of the Binomial Model.- G.7 Conservation of the Number of Events.- G.8 Normalising the Posterior of the Binomial Model.- G.9 Lack of Form Invariance of the Multinomial Model.- H Independence of Parameters.- H.1 On theMeasure of a Factorising Group.- H.2 Marginal Distribution of the Posterior of the Multinomial Model.- H.3 A Minor Posterior of the Multinomial Model.- I.1 A Factorising Gaussian Model.- I.2 A Basis for Fourier Expansions.- J.2 The Deviation Between Two Distributions.- References.
Recenzii
From the reviews:
"The book under review combines features of a textbook and a monograph. … Arguments are presented as explicitly as possible with the aid of appendices … . There are numerous examples and illustrations, often taken from physics research. Problems are posed and their solutions are provided." (Joseph Melamed, Zentralblatt MATH, Vol. 1019, 2003)
"The book under review combines features of a textbook and a monograph. … Arguments are presented as explicitly as possible with the aid of appendices … . There are numerous examples and illustrations, often taken from physics research. Problems are posed and their solutions are provided." (Joseph Melamed, Zentralblatt MATH, Vol. 1019, 2003)
Textul de pe ultima copertă
The book provides a generalization of Gaussian error intervals to
situations where the data follow non-Gaussian distributions. This
usually occurs in frontier science, where the observed parameter is
just above background or the histogram of multiparametric data
contains empty bins. Then the validity of a theory
cannot be decided by the chi-squared-criterion, but this long-standing
problem is solved here. The book is based on Bayes' theorem, symmetry and
differential geometry. In addition to solutions of practical problems, the text
provides an epistemic insight: The logic of quantum mechanics is
obtained as the logic of unbiased inference from counting data.
However, no knowledge of quantum mechanics is required. The text,
examples and exercises are written at an introductory level.
situations where the data follow non-Gaussian distributions. This
usually occurs in frontier science, where the observed parameter is
just above background or the histogram of multiparametric data
contains empty bins. Then the validity of a theory
cannot be decided by the chi-squared-criterion, but this long-standing
problem is solved here. The book is based on Bayes' theorem, symmetry and
differential geometry. In addition to solutions of practical problems, the text
provides an epistemic insight: The logic of quantum mechanics is
obtained as the logic of unbiased inference from counting data.
However, no knowledge of quantum mechanics is required. The text,
examples and exercises are written at an introductory level.
Caracteristici
Brings a basic introduction for advanced undergraduates and graduates With applications to physics Works also w/o thorough knowledge of quantum mechanics Includes supplementary material: sn.pub/extras