Bayesian Models of Perception and Action
Autor Konrad Paul Kording, Wei Ji Maen Limba Engleză Hardback – 8 aug 2023
Preț: 405.52 lei
Preț vechi: 471.53 lei
-14% Nou
Puncte Express: 608
Preț estimativ în valută:
77.62€ • 79.99$ • 65.53£
77.62€ • 79.99$ • 65.53£
Carte disponibilă
Livrare economică 10-24 februarie
Livrare express 24-30 ianuarie pentru 53.34 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780262047593
ISBN-10: 0262047594
Pagini: 360
Ilustrații: 128 colour illustrations
Dimensiuni: 209 x 261 x 29 mm
Greutate: 1.03 kg
Editura: MIT Press Ltd
ISBN-10: 0262047594
Pagini: 360
Ilustrații: 128 colour illustrations
Dimensiuni: 209 x 261 x 29 mm
Greutate: 1.03 kg
Editura: MIT Press Ltd
Notă biografică
Wei Ji Ma, Konrad Paul Kording, and Daniel Goldreich
Cuprins
Acknowledgments xv
The Four Steps of Bayesian Modeling xvii
List of Acronyms xix
Introduction 1
1 Uncertainty and Inference 7
2 Using Bayes' Rule 31
3 Bayesian Inference under Measurement Noise 53
4 The Response Distribution 83
5 Cue Combination and Evidence Accumulation 105
6 Learning as Inference 125
7 Discrimination and Detection 147
8 Binary Classification 169
9 Top-Level Nuisance Variables and Ambiguity 191
10 Same-Different Judgment 205
11 Search 227
12 Inference in a Changing World 245
13 Combining Inference with Utility 257
14 The Neural Likelihood Function 281
15 Bayesian Models in Context 301
Appendices 311
A Notation 313
B Basics of Probability Theory 315
C Model Fitting and Model Comparison 343
Bibliography 361
Index 371
The Four Steps of Bayesian Modeling xvii
List of Acronyms xix
Introduction 1
1 Uncertainty and Inference 7
2 Using Bayes' Rule 31
3 Bayesian Inference under Measurement Noise 53
4 The Response Distribution 83
5 Cue Combination and Evidence Accumulation 105
6 Learning as Inference 125
7 Discrimination and Detection 147
8 Binary Classification 169
9 Top-Level Nuisance Variables and Ambiguity 191
10 Same-Different Judgment 205
11 Search 227
12 Inference in a Changing World 245
13 Combining Inference with Utility 257
14 The Neural Likelihood Function 281
15 Bayesian Models in Context 301
Appendices 311
A Notation 313
B Basics of Probability Theory 315
C Model Fitting and Model Comparison 343
Bibliography 361
Index 371