Bayesian Nonparametrics: Cambridge Series in Statistical and Probabilistic Mathematics, cartea 28
Editat de Nils Lid Hjort, Chris Holmes, Peter Müller, Stephen G. Walkeren Limba Engleză Hardback – 11 apr 2010
Din seria Cambridge Series in Statistical and Probabilistic Mathematics
- 8% Preț: 501.14 lei
- 15% Preț: 430.11 lei
- Preț: 310.95 lei
- Preț: 402.07 lei
- 8% Preț: 420.34 lei
- Preț: 390.03 lei
- 11% Preț: 656.37 lei
- 8% Preț: 392.97 lei
- 8% Preț: 468.66 lei
- 20% Preț: 466.18 lei
- 11% Preț: 696.49 lei
- Preț: 445.84 lei
- Preț: 389.12 lei
- Preț: 463.06 lei
- 20% Preț: 282.30 lei
- 11% Preț: 643.13 lei
- 20% Preț: 674.56 lei
- 11% Preț: 449.95 lei
- Preț: 439.76 lei
- Preț: 403.35 lei
- Preț: 398.07 lei
- Preț: 273.60 lei
- Preț: 408.72 lei
- Preț: 403.76 lei
- 11% Preț: 451.28 lei
- Preț: 310.01 lei
- Preț: 454.17 lei
- 14% Preț: 843.76 lei
- 11% Preț: 579.30 lei
- 11% Preț: 582.76 lei
- Preț: 406.17 lei
- 11% Preț: 452.98 lei
- 11% Preț: 577.94 lei
- 11% Preț: 528.66 lei
- 11% Preț: 428.04 lei
- 11% Preț: 556.42 lei
- 11% Preț: 535.80 lei
- 11% Preț: 588.79 lei
Preț: 572.91 lei
Preț vechi: 643.72 lei
-11% Nou
Puncte Express: 859
Preț estimativ în valută:
109.64€ • 113.89$ • 91.07£
109.64€ • 113.89$ • 91.07£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780521513463
ISBN-10: 0521513464
Pagini: 308
Ilustrații: 24 b/w illus.
Dimensiuni: 178 x 254 x 23 mm
Greutate: 0.73 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Series in Statistical and Probabilistic Mathematics
Locul publicării:Cambridge, United Kingdom
ISBN-10: 0521513464
Pagini: 308
Ilustrații: 24 b/w illus.
Dimensiuni: 178 x 254 x 23 mm
Greutate: 0.73 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Series in Statistical and Probabilistic Mathematics
Locul publicării:Cambridge, United Kingdom
Cuprins
An invitation to Bayesian nonparametrics Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker; 1. Bayesian nonparametric methods: motivation and ideas Stephen G. Walker; 2. The Dirichlet process, related priors, and posterior asymptotics Subhashis Ghosal; 3. Models beyond the Dirichlet process Antonio Lijoi and Igor Prünster; 4. Further models and applications Nils Lid Hjort; 5. Hierarchical Bayesian nonparametric models with applications Yee Whye Teh and Michael I. Jordan; 6. Computational issues arising in Bayesian nonparametric hierarchical models Jim Griffin and Chris Holmes; 7. Nonparametric Bayes applications to biostatistics David B. Dunson; 8. More nonparametric Bayesian models for biostatistics Peter Müller and Fernando Quintana; Author index; Subject index.
Recenzii
"The book looks like it will be useful to a wide range of researchers. I like that there is a lot of discussion of the models themselves as well as the computation. The book, especially in the early chapters, is more theoretical than I would prefer... But, hey, that's just my taste... on the whole I think the book is excellent. If I didn't think the book was important, I wouldn't be spending my time pointing out my disagreements with it!"
Andrew Gelman, Columbia University
"The book provides a tour de force presentation of selected topics in an emerging branch of modern statistical science, and not only justfies the reader’s curiosity, but also expands it.... The book brings together a well-structured account of a number of topics on the theory, methodology, applications, and challenges of future developments in the rapidly expanding area of Bayesian nonparametrics. Given the current dearth of books on BNP, this book will be an invaluable source of information and reference for anyone interested in BNP, be it a student, an established statistician, or a researcher in need of flexible statistical analyses."
Milovan Krnjajic, Journal of the American Statistical Association
Andrew Gelman, Columbia University
"The book provides a tour de force presentation of selected topics in an emerging branch of modern statistical science, and not only justfies the reader’s curiosity, but also expands it.... The book brings together a well-structured account of a number of topics on the theory, methodology, applications, and challenges of future developments in the rapidly expanding area of Bayesian nonparametrics. Given the current dearth of books on BNP, this book will be an invaluable source of information and reference for anyone interested in BNP, be it a student, an established statistician, or a researcher in need of flexible statistical analyses."
Milovan Krnjajic, Journal of the American Statistical Association
Descriere
The most intelligent guide to the hottest field in statistics.