Bayesian Probability Theory: Applications in the Physical Sciences
Autor Wolfgang von der Linden, Volker Dose, Udo von Toussainten Limba Engleză Hardback – 11 iun 2014
Preț: 685.10 lei
Preț vechi: 769.78 lei
-11% Nou
Puncte Express: 1028
Preț estimativ în valută:
131.11€ • 136.71$ • 108.96£
131.11€ • 136.71$ • 108.96£
Carte tipărită la comandă
Livrare economică 21 martie-04 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107035904
ISBN-10: 1107035902
Pagini: 649
Ilustrații: 128 b/w illus.
Dimensiuni: 180 x 263 x 38 mm
Greutate: 1.32 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1107035902
Pagini: 649
Ilustrații: 128 b/w illus.
Dimensiuni: 180 x 263 x 38 mm
Greutate: 1.32 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer–Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
Descriere
Covering all aspects of probability theory, statistics and data analysis from a Bayesian perspective for graduate students and researchers.