Beginning Machine Learning in the Browser: Quick-start Guide to Gait Analysis with JavaScript and TensorFlow.js
Autor Nagender Kumar Suryadevaraen Limba Engleză Paperback – 2 apr 2021
Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized.
After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of MLimplementation issues. For example, you’ll learn about the classification of normal and abnormal Gait patterns.
With Beginning Machine Learning in the Browser, you’ll be on your way to becoming an experienced Machine Learning developer.
What You’ll Learn
- Work with ML models, calculations, and information gathering
- Implement TensorFlow.js libraries for ML models
- Perform Human Gait Analysis using ML techniques in the browser
Computer science students and research scholars, and novice programmers/web developers in the domain of Internet Technologies
Preț: 205.31 lei
Preț vechi: 256.63 lei
-20% Nou
Puncte Express: 308
Preț estimativ în valută:
39.29€ • 40.81$ • 32.64£
39.29€ • 40.81$ • 32.64£
Carte disponibilă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781484268421
ISBN-10: 1484268423
Pagini: 182
Ilustrații: XIV, 182 p. 71 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.29 kg
Ediția:1st ed.
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States
ISBN-10: 1484268423
Pagini: 182
Ilustrații: XIV, 182 p. 71 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.29 kg
Ediția:1st ed.
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States
Cuprins
Chapter 1: Web Development.- Chapter 2: Browser- based Data Processing.- Chapter 3: Human Pose.- Chapter 4: Human Pose Classification.- Chapter 5: Gait Analysis.- Chapter 6: Future Possibilities for Running AI Methods in a Browser.
Notă biografică
Nagender Kumar Suryadevara received his Ph.D. from the School of Engineering and Advanced Technology, Massey University, New Zealand, in 2014. He has authored two books and over 45 publications in different international journals, conferences, and book chapters. His research interests lie in the domains of wireless sensor networks, Internet of Things technologies, and time-series data mining.
Textul de pe ultima copertă
Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas.
Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized.
After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, you’ll learn about the classification of normal and abnormal Gait patterns.
With Beginning Machine Learning in the Browser, you’ll be on your way to becoming an experienced Machine Learning developer.
You will:
After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, you’ll learn about the classification of normal and abnormal Gait patterns.
With Beginning Machine Learning in the Browser, you’ll be on your way to becoming an experienced Machine Learning developer.
You will:
- Work with ML models, calculations, and information gathering
- Implement TensorFlow.js libraries for ML models
- Perform Human Gait Analysis using ML techniques in the browser
Caracteristici
Perform human gait analysis with TensorFlow.JS ML and Processing (P5) libraries Build a solid foundation in machine learning with the ubiquitous JavaScript language Train and deploy ML models in the browser with TensorFlow.js