Bio-Inspired Strategies for Modeling and Detection in Diabetes Mellitus Treatment
Autor Alma Y Alanis, Oscar D Sánchez, Alonso Vaca Gonzalez, Marco Perez Cisnerosen Limba Engleză Paperback – 23 apr 2024
- Addresses the online identification of diabetes mellitus using a high-order recurrent neural network trained online by an extended Kalman filter.
- Covers parametric identification of compartmental models used to describe diabetes mellitus.
- Provides modeling of data obtained by continuous glucose-monitoring sensors for the prediction of risk scenarios such as hyperglycaemia and hypoglycaemia.
Preț: 838.77 lei
Preț vechi: 921.73 lei
-9% Nou
Puncte Express: 1258
Preț estimativ în valută:
160.53€ • 169.35$ • 133.78£
160.53€ • 169.35$ • 133.78£
Carte tipărită la comandă
Livrare economică 27 decembrie 24 - 10 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443223419
ISBN-10: 0443223416
Pagini: 152
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0443223416
Pagini: 152
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
Cuprins
1. Introduction
2. Problem statement
3. Mathematical preliminaries
4. Parameter estimation for glucose-insulin dynamics
5. Neural model for glucose-insulin dynamics
6. Multistep predictor applied to T1DM patients
7. Classification and detection of diabetes mellitus and glucose intolerance
8. Conclusion
2. Problem statement
3. Mathematical preliminaries
4. Parameter estimation for glucose-insulin dynamics
5. Neural model for glucose-insulin dynamics
6. Multistep predictor applied to T1DM patients
7. Classification and detection of diabetes mellitus and glucose intolerance
8. Conclusion