Cantitate/Preț
Produs

Biochemistry of Dioxygen: Biochemistry of the Elements, cartea 4

Autor Lloyd L. Ingraham, Damon L. Meyer
en Limba Engleză Paperback – 27 sep 2011
This book is written for the research biochemist who needs to know more about the particular field of dioxygen metabolism, whether this be for designing lectures for a graduate level course or for his or her own research needs. We hope researchers in a given area of dioxygen metabolism will gain knowledge of related fields of dioxygen metabolism. We have decided to use the term dioxygen to distinguish molecular oxygen from divalent oxygen in water and organic compounds, dioxygen being a simpler term than molecular oxygen. We do not intend to review the metabolism of all compounds that contain oxygen, since this would include all of biochemistry. An understanding of dioxygen chemistry is essential to the discussion of the biochemistry of dioxygen. While this statement could be made about any biochemical constituent, the chemistry of dioxygen is so unusual that interpre­ tations without detailed chemical background are futile. Prediction of dioxygen reaction products by analogy with other oxidants is impossible. The partial reduction products of dioxygen, superoxide ion and peroxides, develop naturally in the chemistry of dioxygen. It would be difficult to discuss dioxygen biochemistry without first discussing these partial reduction products.
Citește tot Restrânge

Din seria Biochemistry of the Elements

Preț: 61649 lei

Preț vechi: 72528 lei
-15% Nou

Puncte Express: 925

Preț estimativ în valută:
11798 12446$ 9860£

Carte tipărită la comandă

Livrare economică 01-15 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461295013
ISBN-10: 1461295017
Pagini: 304
Ilustrații: 300 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Us
Colecția Springer
Seria Biochemistry of the Elements

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Introduction.- 1.1 Chemical Reactions of Dioxygen.- 1.2 Biological Reactions of Dioxygen.- 1.3 Reduction Products of Dioxygen.- 1.4 Dioxygen Enzymes.- 1.5 Oxygen-17 Nuclear Magnetic Resonance Spectroscopy of Oxygen.- References.- 2. Ground-State Dioxygen.- 2.1 Properties of Dioxygen.- 2.2 Reactions of Dioxygen.- 2.3 Chain Reactions of Dioxygen.- 2.4 Examples of Dioxygen Chain Reactions.- References.- 3. Singlet Dioxygen.- 3.1 Physical Properties and Generation.- 3.2 Detection of Singlet Dioxygen.- 3.3 Organic Reactions of Singlet Dioxygen.- 3.4 Singlet Dioxygen-Tocopherol Reaction.- 3.5 Metathesis.- 3.6 Phototaxis.- 3.7 Singlet Sigma Dioxygen.- Summary.- References.- 4. Superoxide Ion.- 4.1 Properties, Sources, and Stability.- 4.2 Detection of Superoxide Ion.- 4.3 Haber-Weiss Reaction.- 4.4 Detection of -OH Radicals.- 4.5 Reactions of Superoxide Ion with Organic Compounds.- 4.6 Superoxide Dismutase.- References.- 5. Dialkyl Peroxides.- 5.1 Introduction.- 5.2 Naturally Occurring Dialkyl Peroxides other than Prostaglandin Intermediates.- 5.3 Prostaglandin.- References.- 6. Catalases and Peroxidases.- 6.1 Catalase.- 6.2 Peroxidase.- 6.3 Mechanisms of Catalase and Peroxidase.- 6.4 Chloroperoxidase.- 6.5 Glutathione Peroxidase.- References.- 7. Dioxygen as a Terminal Oxidant and the Formation of Dioxygen.- 7.1 Fitness of Dioxygen as a Terminal Oxidant.- 7.2 Formation of Dioxygen.- References.- 8. Metal-Dioxygen Complexes.- 8.1 Metal-Dioxygen Bonding.- 8.2 Activation of Dioxygen.- 8.3 Classification of Metal-Dioxygen Complexes.- 8.4 Bonding vs. Oxidation.- References.- 9. Biological Iron Dioxygen Carriers.- 9.1 Hemoglobin and Myoglobin.- 9.2 Hemoglobin Models.- 9.3 Hemerythrin.- References.- 10. Hemocyanin: A Biological Copper Dioxygen Carrier.- 10.1 General Properties.- 10.2 Hemocyanin Models.- References.- 11. Oxidases.- 11.1 Introduction.- 11.2 Laccase.- 11.3 Ceruloplasmin.- 11.4 Ascorbic Acid Oxidase.- 11.5 Amine Oxidases.- 11.6 Galactose Oxidase.- 11.7 Cytochrome Oxidase.- 11.8 Xanthine Oxidase.- 11.9 D-Amino Acid Oxidase.- 11.10 Glucose Oxidase.- 11.11 Lactate Oxidase.- References.- 12. Flavin Monooxygenases.- 12.1 Introduction.- 12.2 Salicylate Hydroxylase.- 12.3 m-Hydroxybenzoate Hydroxylase.- 12.4 m-Hydroxybenzoate 4-Hydroxylase.- 12.5 p-Hydroxybenzoate Hydroxylase.- 12.6 Melilotic Hydroxylase.- 12.7 Phenol Hydroxylase.- 12.8 Orcinol Hydroxylase.- 12.9 Kynurenine 3-Hydroxylase.- 12.10 Imidazoylacetate Monooxygenase.- 12.11 Amine Oxidase.- 12.12 p-Cresol Methyl Hydroxylase.- 12.13 Mechanisms of Hydroxylation.- 12.14 Baeyer-Villiger Enzymes.- 12.15 Lactic Monooxygenase.- 12.16 Lysine Monooxygenase.- 12.17 Arginine Monooxygenase.- 12.18 Oxalic Acid Oxidase.- 12.19 Mechanism of Oxidative Decarboxylation.- References.- 13. Pterin Monooxygenases.- 13.1 Introduction.- 13.2 Phenylalanine Hydroxylase.- 13.3 Tyrosine Hydroxylase.- References.- 14. Copper Hydroxylases.- 14.1 Tyrosine.- 14.2 Dopamine-?-Hydroxylase.- References.- 15. Cytochrome P-450.- 15.1 Properties.- 15.2 Reaction Mechanisms.- 15.3 Model Studies.- 15.4 Oxides and Amine Dealkylation.- References.- 16. Other Iron Monooxygenases.- 16.1 Heme Oxidation.- 16.2 Tryptophan Side-Chain Oxidation.- 16.3 Indolyl-l,3-alkane ?-Hydroxylase.- References.- 17. Ribulose Bisphosphate Oxygenase.- 17.1 Introduction.- 17.2 Chemical Analysis.- 17.3 Effectors and Inhibitors.- 17.4 Reaction Mechanism.- References.- 18. Dioxygenases.- 18.1 Lipoxygenase.- 18.2 Lipoxygenase Mechanism.- 18.3 Other Lipoxygenases.- 18.4 Prostaglandin Synthetase.- 18.5 Pyrrolases.- 18.6 Tryptophan Dioxygenase.- 18.7Indoleamine 2,3-Dioxygenase.- 18.9 ?-Keto-Acid-Dependent Hydroxylases.- 18.10 2-Methyl-3-hydroxy-5-carboxy-pyridine Dioxygenase.- 18.11 Quercetinase.- 18.12 Benzene Dioxygenase.- References.- 19. Bioluminescence.- 19.1 General Concepts.- 19.2 Firefly Bioluminescence.- 19.3 Cypridina Bioluminescence.- 19.4 Bacterial Bioluminescence.- 19.5 Limpet Bioluminescence.- 19.6 Centipede Bioluminescence.- References.- 20. Dioxygen Toxicity.- 20.1 Introduction.- 20.2 Superoxide Toxicity.- 20.3 Measurement of Lipid Oxidation.- 20.4 Cytotoxic Compounds.- 20.5 Beneficial Functions of Dioxygen.- References.- 21. Further Chemistry of Singlet Dioxygen.- 21.1 A Word of Explanation.- 21.2 Reaction of Singlet Dioxygen with Olefins to Form Allylic Hydroperoxides.- 21.3 Concerted Cyclic Transition State Hypothesis in Allylic Hydroperoxides.- 21.4 Perepoxide Hypothesis.- 21.5 Diradical Hypothesis.- 21.6 An Alternative Hypothesis for Allylic Hydroperoxide Formation.- 21.7 Reaction of Singlet Dioxygen with ?,?-Unsaturated Diketones.- 21.8 Reaction of Singlet Dioxygen with Strained Acetylene.- References.