Biomechanics of the Aorta: Modeling for Patient Care: Biomechanics of Living Organs
Editat de T. Christian Gasser, Stéphane Avril, John A. Elefteriadesen Limba Engleză Hardback – 20 iun 2024
- Comprehensive coverage of the main computational fluid dynamic studies and biomechanical and mechanobiological models developed over the last decade
- Introduces the most recent imaging technologies to characterize factors, including aortic geometry, mechanical properties of aortic tissues, and cellular activity in the vessel wall
- Synthesizes advances in vascular biomechanics, medical imaging, and computational modeling of finite element fluid and solid models
Preț: 965.84 lei
Preț vechi: 1061.36 lei
-9% Nou
Puncte Express: 1449
Preț estimativ în valută:
184.85€ • 195.01$ • 154.04£
184.85€ • 195.01$ • 154.04£
Carte tipărită la comandă
Livrare economică 26 decembrie 24 - 09 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780323954846
ISBN-10: 0323954847
Pagini: 634
Dimensiuni: 191 x 235 mm
Greutate: 1.29 kg
Editura: ELSEVIER SCIENCE
Seria Biomechanics of Living Organs
ISBN-10: 0323954847
Pagini: 634
Dimensiuni: 191 x 235 mm
Greutate: 1.29 kg
Editura: ELSEVIER SCIENCE
Seria Biomechanics of Living Organs
Public țintă
Graduate students, post-docs, and professionals in biomedical and biomechanical engineering; as well as biomedical and clinical researchers; all who need to: -understand fundamental properties of the aorta, -conduct experimental procedures, -perform animal experiments, -design and test clinical devices, and -develop biomechanical finite element computations of the aortaCuprins
PART 1 Anatomy, biology, physiopathology 1. Physiopathology 2. Genetics of aortic disease 3. Mechanobiology of aortic cells and extracellular matrix 4. Clinical treatment options PART 2 Imaging and tissue/rheology characterization 5. Novel experimental methods to characterize the mechanical properties of the aorta 6. Imaging aortic flows in 4D using MRI 7. Ultrasound imaging for aortic biomechanics 8. Functional imaging, focus on [18F]FDG positron emission tomography 9. Image processing: Deep learning for aorta model reconstruction PART 3 Tissue modeling and rupture 10. On simulation of the biophysical behavior of the aortic heart valve interstitial cell 11. Abdominal Aortic Aneurysm and thrombus modeling 12. Computational modeling of aneurysm growth in mechanobiology 13. Analysis of aortic rupture: A computational biomechanics perspective 14. Multiscale modeling of aortic mechanics: Tissue, network, and protein PART 4 Flow modeling and algorithm 15. Multiphysics flow modeling in the aorta 16. Novel Approaches for the numerical solution of fluid-structure interaction in the Aorta 17. Turbulence modeling of blood flow 18. Inverse problems in aortic flow modeling 19. Modeling of flow induced mechanosignaling 20. Reduced order modeling of cardiovascular hemodynamics PART 5 Applications 21. Transcatheter aortic valve implantation (TAVI) 22. Abdominal Aortic Aneurysm rupture prediction 23. (T)EVAR simulation 24. Fluid Structure Interaction (FSI) in aortic dissections 25. Pharmacological treatments, mouse models, and the aorta