Brownian Motion and Stochastic Calculus
Autor Ioannis Karatzas, Steven Shreveen Limba Engleză Paperback – 16 aug 1991
This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large number of problems and exercises.
Preț: 466.40 lei
Nou
Puncte Express: 700
Preț estimativ în valută:
89.27€ • 91.100$ • 75.36£
89.27€ • 91.100$ • 75.36£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387976556
ISBN-10: 0387976558
Pagini: 470
Ilustrații: XXIII, 470 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.7 kg
Ediția:2nd ed. 1998
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 0387976558
Pagini: 470
Ilustrații: XXIII, 470 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.7 kg
Ediția:2nd ed. 1998
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Martingales, Stopping Times, and Filtrations.- 1.1. Stochastic Processes and ?-Fields.- 1.2. Stopping Times.- 1.3. Continuous-Time Martingales.- 1.4. The Doob—Meyer Decomposition.- 1.5. Continuous, Square-Integrable Martingales.- 1.6. Solutions to Selected Problems.- 1.7. Notes.- 2 Brownian Motion.- 2.1. Introduction.- 2.2. First Construction of Brownian Motion.- 2.3. Second Construction of Brownian Motion.- 2.4. The SpaceC[0, ?), Weak Convergence, and Wiener Measure.- 2.5. The Markov Property.- 2.6. The Strong Markov Property and the Reflection Principle.- 2.7. Brownian Filtrations.- 2.8. Computations Based on Passage Times.- 2.9. The Brownian Sample Paths.- 2.10. Solutions to Selected Problems.- 2.11. Notes.- 3 Stochastic Integration.- 3.1. Introduction.- 3.2. Construction of the Stochastic Integral.- 3.3. The Change-of-Variable Formula.- 3.4. Representations of Continuous Martingales in Terms of Brownian Motion.- 3.5. The Girsanov Theorem.- 3.6. Local Time and a Generalized Itô Rule for Brownian Motion.- 3.7. Local Time for Continuous Semimartingales.- 3.8. Solutions to Selected Problems.- 3.9. Notes.- 4 Brownian Motion and Partial Differential Equations.- 4.1. Introduction.- 4.2. Harmonic Functions and the Dirichlet Problem.- 4.3. The One-Dimensional Heat Equation.- 4.4. The Formulas of Feynman and Kac.- 4.5. Solutions to selected problems.- 4.6. Notes.- 5 Stochastic Differential Equations.- 5.1. Introduction.- 5.2. Strong Solutions.- 5.3. Weak Solutions.- 5.4. The Martingale Problem of Stroock and Varadhan.- 5.5. A Study of the One-Dimensional Case.- 5.6. Linear Equations.- 5.7. Connections with Partial Differential Equations.- 5.8. Applications to Economics.- 5.9. Solutions to Selected Problems.- 5.10. Notes.- 6 P. Lévy’s Theory of Brownian Local Time.-6.1. Introduction.- 6.2. Alternate Representations of Brownian Local Time.- 6.3. Two Independent Reflected Brownian Motions.- 6.4. Elastic Brownian Motion.- 6.5. An Application: Transition Probabilities of Brownian Motion with Two-Valued Drift.- 6.6. Solutions to Selected Problems.- 6.7. Notes.
Recenzii
Second Edition
I. Karatzas and S.E. Shreve
Brownian Motion and Stochastic Calculus
"A valuable book for every graduate student studying stochastic process, and for those who are interested in pure and applied probability. The authors have done a good job."—MATHEMATICAL REVIEWS
I. Karatzas and S.E. Shreve
Brownian Motion and Stochastic Calculus
"A valuable book for every graduate student studying stochastic process, and for those who are interested in pure and applied probability. The authors have done a good job."—MATHEMATICAL REVIEWS
Caracteristici
A perennial best-seller, now in its fourth printing Brownian motion is currently a hot topic in mathematics Karatzas is one of the leaders in the field of stochastics and finance