Cantitate/Preț
Produs

Buildings and Schubert Schemes

Autor Carlos Contou-Carrere
en Limba Engleză Paperback – 31 mar 2021
The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.
Citește tot Restrânge

Preț: 45330 lei

Nou

Puncte Express: 680

Preț estimativ în valută:
8676 9024$ 7271£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367782665
ISBN-10: 0367782669
Pagini: 462
Dimensiuni: 156 x 234 x 24 mm
Greutate: 0.86 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States

Cuprins

Grassmannians and Flag Varieties. Schubert Cell Decomposition of Grassmannians and Flag Varieties. Resolution of Singularities of a Schubert Variety. The Singular Locus of a Schubert Variety. The Flag Complex. Configurations and Galleries Varieties. Configurations Varieties as Galleries Varieties. The Coxeter Complex. Minimal Generalized Galleries in a Coxeter Complex. Minimal Generalized Galleries in a Reductive Group Building. Parabolic Subgroups in a Reductive Group Scheme. Associated Schemes to the Relative Building. Incidence Type Schemes of the Relative Building. Smooth Resolutions of Schubert Schemes. Contracted Products and Galleries Configurations Schemes. Functoriality of Schubert Schemes Smooth Resolutions and Base Changes. About the Coxeter Complex. Generators and Relations and the Building of a Reductive Group.

Descriere

The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schem