Cantitate/Preț
Produs

Chaos, Fractals, and Dynamics: Lecture Notes in Pure and Applied Mathematics

Autor Fischer
en Limba Engleză Paperback – 3 iun 1985
This book contains eighteen papers, all more-or-less linked to the theory of dynamical systems together with related studies of chaos and fractals. It shows many fractal configurations that were generated by computer calculations of underlying two-dimensional maps.
Citește tot Restrânge

Din seria Lecture Notes in Pure and Applied Mathematics

Preț: 154639 lei

Preț vechi: 188584 lei
-18% Nou

Puncte Express: 2320

Preț estimativ în valută:
29593 30709$ 24735£

Carte tipărită la comandă

Livrare economică 17-31 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780824773250
ISBN-10: 082477325X
Pagini: 280
Dimensiuni: 178 x 254 x 13 mm
Greutate: 0.5 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Lecture Notes in Pure and Applied Mathematics


Public țintă

Professional

Cuprins

Part I 1. Chaostrophes, Incermittency, and Noise 2. The Outstructure of the Lorenz Attractor 3. Chaos and Intermittency in an Endocrine System Model 4. An Index for Chaotic Solutions in Cooperative Peeling 5. Unfoldings of Degenerate Bifurcations 6. Example of an Axiom a ODE Part II 7. Is There Chaos Without Noise? 8. Chaostrophes of Forced Van der Pol Systems 9. Numerical Solution of the Lorenz Equations with Spatial Inhomogeneity 10. Some Results on Singular Delay—Differential Equations 11. Feigenbaum Functional Equations as Dynamical Systems 12. The Chaos of Dynamical Systems 13. On Network Perturbations of Electrical Circuits and Singular Perturbation of Dynamical Systems 14. On the Dynamics of Iterated Maps III: The Individual Molecules of the M—Set, Self—Similarity Properties, the Empirical n2 Rule, and the n2 Conjecture 15. On the Dynamics of Iterated Maps IV: The Notion of “Normalized Radical” R of the M—Set, and the Fractal Dimension of the Boundary of R 16. On the Dynamics of Iterated Maps V: Conjecture That the Boundary of the H—Set Has a Fractal Dimension Equal to 2 17. On the Dynamics of Iterated Maps VI: Conjecture That Certain Julia Sets Include Smooth Components 18. On the Dynamics of Iterated Maps VII: Domain—Filling (“Peamo”) Sequemces of Fractal Julia Sets, and an Intuitive Rationale for the Siegel Discs

Descriere

This book contains eighteen papers, all more-or-less linked to the theory of dynamical systems together with related studies of chaos and fractals. It shows many fractal configurations that were generated by computer calculations of underlying two-dimensional maps.