Clifford Algebras and Their Application in Mathematical Physics: Aachen 1996: Fundamental Theories of Physics, cartea 94
Editat de Volker J. Dietrich, Gerhard Jank, Klaus Habethaen Limba Engleză Hardback – 28 feb 1998
Din seria Fundamental Theories of Physics
- Preț: 495.14 lei
- 20% Preț: 1002.35 lei
- Preț: 414.40 lei
- 20% Preț: 819.48 lei
- 18% Preț: 756.93 lei
- 18% Preț: 927.84 lei
- 18% Preț: 923.24 lei
- 24% Preț: 794.89 lei
- 15% Preț: 572.92 lei
- 18% Preț: 921.25 lei
- 18% Preț: 1194.41 lei
- 15% Preț: 570.99 lei
- 18% Preț: 1200.55 lei
- 18% Preț: 919.68 lei
- Preț: 383.65 lei
- 18% Preț: 927.54 lei
- 18% Preț: 1205.44 lei
- 18% Preț: 927.54 lei
- 18% Preț: 925.98 lei
- 18% Preț: 921.69 lei
- 15% Preț: 629.50 lei
- 18% Preț: 1196.70 lei
- 18% Preț: 968.15 lei
- 18% Preț: 919.25 lei
- 15% Preț: 621.90 lei
- 15% Preț: 618.57 lei
- Preț: 380.64 lei
- 18% Preț: 757.84 lei
- Preț: 380.64 lei
- 15% Preț: 630.48 lei
- Preț: 386.44 lei
- 24% Preț: 586.68 lei
- 15% Preț: 626.49 lei
- 18% Preț: 1192.87 lei
Preț: 576.88 lei
Preț vechi: 678.69 lei
-15% Nou
Puncte Express: 865
Preț estimativ în valută:
110.39€ • 116.11$ • 92.24£
110.39€ • 116.11$ • 92.24£
Carte tipărită la comandă
Livrare economică 08-22 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792350378
ISBN-10: 0792350375
Pagini: 441
Dimensiuni: 160 x 240 mm
Greutate: 0.85 kg
Editura: Kluwer Academic Publishers
Seria Fundamental Theories of Physics
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792350375
Pagini: 441
Dimensiuni: 160 x 240 mm
Greutate: 0.85 kg
Editura: Kluwer Academic Publishers
Seria Fundamental Theories of Physics
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
Preface. Dirac Operators and Clifford Geometry - New Unifying Principles in Particle Physics; Th. Ackermann. On the Hayman Uniqueness Problem for Polyharmonic Functions; M.B. Balk, M.Ya. Mazalov. Left-Linear and Nonlinear Riemann Problems in Clifford Analysis; S. Bernstein. Spin Structures and Harmonic Spinors on Nonhyperelliptic Riemann Surfaces of Small Genera; J. Bures. Decomposition of Analytic Hyperbolically Harmonic Functions; P. Cerejeiras. Spin Gauge Theories: A Summary; J.S.R. Chisholm, R.S. Farwell. Manifolds with and Without Embeddings; J. Cnops. Dirac Equation in the Clifford Algebra of Space; C. Daviau. Dirac Theory from a Field Theoretic Point of View; B. Fauser. On Some Applications of the Biharmonic Equation; K. Gürlebeck. Spinor Particle Mechanics; D. Hestenes. Clifford Analysis and Elliptic Boundary Value Problems in Unbounded Domains; U. Kähler. Twistors and Clifford Algebras; J. Keller. How Many Essentially Different Function Theories Exist? V.V. Kisil. Variational Property of the Peano Kernel for Harmonicity Differences of Order p; W. Haussmann, O.I. Kounchev. Clifford Analysis on the Sphere; P. Van Lancker. Type-Changing Transformations of Pseudo-Euclidean Hurwitz Pairs, Clifford Analysis, and Particle Lifetimes; J. Lawrynowicz. Modified Quaternionic Analysis in R4; Th. Hempfling, H. Leutwiler. Geometric Algebra and Lobachevski Geometry; H. Li. Generalizing the (F,G)-Derivative in the Sense of Bers; H.R. Malonek. Formes quadratiques de Hardy-Weinberg et algèbres de Clifford; A. Micali. On Dirac Equations in Curved Space-Times; D. Miralles. Some Partial Differential Equations in Clifford Analysis; E. Obolashvili. Teaching Clifford Algebra as Physical Mathematics; J.M. Parra. Polydimensional Relativity, a Classical Generalization of the Automorphism Invariance Principle; W.M. Pezzaglia Jr. Subluminal and Superluminal Electromagnetic Waves and the Lepton Mass Spectrum; W.A. Rodrigues Jr., J. Vaz Jr. Higher Spin and the Spacetime Algebra; S. Somaroo. Curved Radon Transforms in Clifford Analysis; F. Sommen. On a Class of Non-Linear Boundary Value Problems; W. Sprössig. Pin Structures and the Dirac Operator on Real Projective Spaces and Quadrics; M. Cahen, et al. Construction of Monopoles and Instantons by Using Spinors and the Inversion Theorem; J. Vaz Jr. Determinants, Manifolds with Boundary and Dirac Operators; K.P. Wojciechowski, et al. New Dynamical Equations for Many Particle System on the Basis of Multicomplex Algebra; R. Yamaleev.